<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

FeCrVTa0.4W0.4高熵合金氮化物薄膜的微觀結構與性能

Microstructure and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films

  • 摘要: 實驗利用單靶射頻磁控濺射技術,在單晶硅基底上,制備了兩個系列FeCrVTa0.4W0.4高熵合金氮化物薄膜,即FeCrVTa0.4W0.4氮化物成分梯度多層薄膜和(FeCrVTa0.4W0.4)Nx單層薄膜,其中,多層薄膜用于太陽光譜選擇性吸收薄膜。通過掃描電子顯微鏡(SEM)、X射線衍射儀(XRD)、納米力學探針、原子力顯微鏡(AFM)、紫外?可見分光光度計、接觸角測量儀和四探針測試臺對FeCrVTa0.4W0.4高熵合金氮化物薄膜進行微觀結構分析以及性能表征。結果表明:在不通入氮氣時,薄膜為非晶結構,當氮氣含量升高后,轉變為面心立方固溶體結構;當表層氮氣流量為15 mL·min?1時,FeCrVTa0.4W0.4氮化物多層薄膜及單層薄膜均具有最佳的力學性能,其中,多層薄膜的硬度為22.05 GPa,模量為287.4 GPa,單層薄膜的硬度為22.8 GPa,模量為280.7 GPa,隨著表層氮氣含量的繼續增加,力學性能下降;FeCrVTa0.4W0.4氮化物成分梯度多層薄膜在300~800 nm波長范圍內均具有太陽光譜選擇吸收性,當氮化物薄膜層數較少時具有較好的疏水性;(FeCrVTa0.4W0.4)Nx單層薄膜隨著氮氣含量的增加,薄膜方塊電阻增加。

     

    Abstract: Recently, research on high-entropy alloys has developed rapidly. While studying high-entropy alloys in bulk, scholars have also conducted in-depth research on high-entropy alloy films, especially high-entropy alloy nitride films. Compared with traditional binary and ternary nitride films, high-entropy alloy nitride films have a simpler and denser structure and better performance, and therefore have great prospects for application in many fields. Research on high-entropy alloy nitride films is still relatively scarce, and the influencing factors of phase structure transformation and mechanical properties need to be further explored. Therefore, it will be an important research direction in the future. Based on a single-target Radio Frequency (RF) magnetron sputtering technique, two series of FeCrVTa0.4W0.4 high-entropy alloy nitride films were fabricated on monocrystalline silicon substrates. These are FeCrVTa0.4W0.4 nitride composition gradient multilayer films and (FeCrVTa0.4W0.4)Nx single-layer films, in which multilayer films are used for solar spectral selective absorption films. Through scanning electron microscope (SEM), X-ray diffractometer (XRD), nanomechanical probe, atomic force microscopy, UV–visible spectrophotometry, contact angle measuring instrument, and four-probe tester, the microstructure, and properties of FeCrVTa0.4W0.4 high-entropy alloy nitride films were analyzed. The results show that the film is amorphous when nitrogen is not introduced. When nitrogen content increases, nitride films are face-center-cubic solid solution in structure. When the surface nitrogen flow rate is 15 sccm, the FeCrVTa0.4W0.4 nitride multilayer film and the single-layer film have the best mechanical properties. Among them, the hardness of the multilayer film is 22.05 GPa and the modulus is 287.4 GPa; the hardness of the single-layer film is 22.8 GPa, and the modulus is 280.7 GPa. As the nitrogen content on the surface continues to increase, the mechanical properties decrease. FeCrVTa0.4W0.4 nitride composition gradient multilayer films have solar spectrum selective absorptivity in the wavelength range of 300–800 nm and have better hydrophobicity when the number of nitride films layer is small. With increasing nitrogen content, the block resistance of (FeCrVTa0.4W0.4)Nx single-layer film increases.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164