<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

石墨烯基超疏水材料制備及其應用研究進展

Research progress in the preparation and application of graphene-based superhydrophobic materials

  • 摘要: 超疏水表面是具有獨特性能的一類表面,本身就具有廣泛應用前景。石墨烯材料作為理化性質出眾的一類材料,由于其高電導率、高導熱系數、高比表面積、高透光率和有優異的機械性能,廣泛應用于航空航天、石油化工、海洋船舶等領域。目前,基于石墨烯材料構建超疏水表面,是超疏水表面研究中一個較新的方向。本文對超疏水表面的原理進行了概述,重點總結歸納了石墨烯基超疏水材料制備技術的研究現狀,包括表面修飾法、沉積改性法、激光誘導法、涂覆法、層層自組裝法等,簡要介紹了石墨烯超疏水材料在自清潔、油水分離、防覆冰、耐腐蝕、抗菌等領域的應用,并對石墨烯超疏水材料的下一步研究方向進行了展望。

     

    Abstract: Superhydrophobicity in the surface is a phenomenon in which the contact angle between the water and the corresponding surface is greater than 150° and the rolling angle is less than 10°. A superhydrophobic surface exhibits unique properties and has a wide range of application prospects in the field of self-cleaning, anti-corrosion, anti-icing, oil-water separation, and antibacterial agents. In addition to its unique self-cleaning properties, it can play a distinctive role in the fields of building maintenance, anti-biological corrosion in ship bodies, medical antibacterial agents, etc. At present, low-surface-energy materials commonly used to construct superhydrophobic materials mainly include alkane compounds, organosilicon compounds, and fluorine-containing compounds. However, these materials generally have problems of high production costs, large environmental pollution, and complex preparation processes, which severely restrict the industrial production and application of superhydrophobic coatings. Graphene is a two-dimensional honeycomb-structured material formed by the covalent bonding of carbon atoms through sp2 hybrid orbitals. It is the basic unit of graphite, and it is the thinnest two-dimensional material found so far. As a class of materials with outstanding physical and chemical properties, graphene materials have always received extensive attention because of its high electrical conductivity, high thermal conductivity, high specific surface area, high light transmittance, and excellent mechanical properties. Therefore, graphene has been considered a promising material in aerospace, petrochemical, marine ships, and other fields. The construction of superhydrophobic surfaces based on graphene is a relatively new direction in the research of superhydrophobic surfaces at present. Although graphene-based superhydrophobic materials have shown excellent performance in the laboratory, they have not been used on a large scale in industrial production. In this paper, the principles of superhydrophobic surfaces were summarized, focusing on the research status of graphene-based super-hydrophobic materials preparation technology, including surface modification, deposition modification, laser induction, dip-coating method, and layer-by-layer self-assembly. The applications of graphene-based super-hydrophobic materials in the fields of self-cleaning, oil-water separation, anti-icing, corrosion resistance, and anti- bacterial agents were also introduced. Finally, this paper presents the prospective future research directions of graphene-based super-hydrophobic materials.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164