<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

高熵合金與非晶合金柔性材料

High-entropy alloy and metallic glass flexible materials

  • 摘要: 高熵合金與非晶合金作為新一代金屬材料,具備許多優異的物理、化學及力學性能,在柔性電子領域展現出巨大的應用潛力。傳統的塊體高熵合金與非晶合金雖然性能優異,但由于材料本身的剛性特點無法滿足可變形電子設備的柔性需求,因此需要通過一定方式如降低維度、設計微結構等賦予其柔性特征。在簡述高熵合金柔性纖維的力學性能特點的基礎上,介紹了高熵合金薄膜作為潛在柔性材料的制備方式與結構性能特點,總結了非晶合金薄膜應用于電子皮膚、柔性電極、微結構制作等柔性電子領域中的最新進展,最后討論了現有工作的不足之處并對未來柔性電子的發展前景進行了展望。

     

    Abstract: In recent years, smart watches and folding-screen phones have become increasingly popular in the electronic market. This trend signifies that consumers nowadays not only pursue high performance of electronic devices but also demand higher comfort from electronic devices. With the improvement of material properties and progress in microelectronics technology, flexible materials and electronic devices have developed rapidly in recent years, forming a research hotspot in the electronics industry. Flexible electronic devices can achieve different deformation states owing to their small size, deformability, and portability. Unlike traditional electronic devices integrated with rigid materials such as silicon, flexible electronic devices can also undergo various mechanical deformations such as stretching, torsion, bending, and folding during usage, which meets the people's requirements for portable, lightweight, and deformable electronic devices. The unique characteristics of flexible electronic devices and materials will promote the innovative development of electronic skin, smart robots, artificial prostheses, implantable medical diagnosis, flexible displays, and the Internet of Things, which will eventually result in tremendous changes in our daily lives. As a new generation of metal materials, high-entropy alloys and metallic glasses have exhibited excellent physical, chemical, and mechanical properties owing to their unique structural characteristics, which show great potential in flexible electronics applications. However, the rigidity of the material itself cannot meet the requirements of deformable electronic devices. Therefore, it is necessary to realize the desired flexibility in these materials by reducing dimensions and designing microstructures. This paper briefly described the mechanical properties and preparation methods of high-entropy fibers and introduced the preparation methods, structural characteristics, and unique properties of high-entropy films as potential flexible materials. Applications of metallic glass in electronic skin, flexible electrodes, and microstructure designing were then summarized. Finally, the shortcomings of the existing work were discussed and the prospects for the development of flexible electronics in the future were presented.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164