<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

一種基于差分進化的正弦余弦算法

A sine cosine algorithm based on differential evolution

  • 摘要: 正弦余弦算法是一種新型仿自然優化算法,利用正余弦數學模型來求解優化問題。為提高正弦余弦算法的優化精度和收斂速度,提出了一種基于差分進化的正弦余弦算法。該算法通過非線性方式調整參數提高算法的搜索能力、利用差分進化策略平衡算法的全局探索能力及局部開發能力并加快收斂速度、通過偵察蜂策略增加種群多樣性以及利用全局最優個體變異策略增強算法的局部開發能力等優化策略來改進算法,最后通過仿真實驗和結果分析證明了算法的優異性能。

     

    Abstract: In 2016, a novel naturally simulated optimization algorithm, termed the sine cosine algorithm (SCA), was proposed by Seyedali Mirjalili from Australia. This algorithm uses the sine cosine mathematical model to solve optimization problems and has attracted extensive attention from numerous scholars and researchers at home and abroad over the last few years. However, similar to other swarm intelligence optimization algorithms, SCA has numerous shortcomings in optimizing some complex function problems. To address the defects of basic SCA, such as low optimization precision, easy dropping into the local extremum, and slow convergence rate, a sine cosine algorithm based on differential evolution (SCADE) was proposed. First, the search capabilities of the new algorithm was improved by adjusting parameter r1 in a nonlinear manner and ensuring that each individual adopts the same parameters r1, r2, r3, and r4. Then, differential evolution strategies, including crossover, variation, and selection, were adopted to fully utilize the leading role of the globally optimal individual and information of other individuals in the population. This approach balanced the global exploration and local development abilities and accelerated the convergence rate of the algorithm. Next, using the reconnaissance bees’ strategy, random initialization was performed on individuals whose fitness values showed no improvement in continuous nlim times, which increased the population diversity and improved the global exploration ability of the algorithm. Moreover, the globally optimal individual variation strategy was used to conduct a fine search near the optimal solution, which enhanced the local development ability and optimization accuracy of the algorithm. Based on the above optimization strategies, the algorithm exhibits improvements and its excellent performance is validated by the result analysis of a simulation experiment.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164