<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

低合金鋼海水腐蝕監測中的雙率數據處理與建模

Processing and modeling dual-rate sampled data in seawater corrosion monitoring of low alloy steels

  • 摘要: 隨著物聯網技術的發展,前端傳感器的使用使得低合金鋼的海水腐蝕監測成為了現實,從而獲得了大量的腐蝕數據。針對傳統均值法處理雙率腐蝕數據帶來的數據信息損失以及建模精度下降問題,提出了一種基于綜合指標值(CIV)和改進相關向量回歸(IRVR)的雙率腐蝕數據處理和建模算法(CIV-IRVR)。首先,通過構建CIV表征輸入數據的綜合影響并采用天牛須搜索(BAS)算法對其參數進行尋優;然后,建立最優CIV序列與輸出數據間的線性回歸模型將雙率數據轉化為建模用的單率數據,能夠更多地保留原始數據信息;最后,給出了一種BAS算法優化的具有組合核函數的改進相關向量回歸建模方法(IRVR),并建立了針對低合金鋼海水腐蝕雙率數據的CIV-IRVR預測模型。結果表明:相比于均值方法處理雙率腐蝕數據,所提方法將建模樣本數量由196提升到了1834;相比于海水腐蝕建模領域常用的人工神經網絡(ANN)和支持向量回歸(SVR)建模方法,所提模型的平均絕對誤差(MAE)、均方根誤差(RMSE)和決定系數(CD)分別為1.1914 mV、1.5729 mV以及0.9963,在各項指標上均優于對比算法,說明所提模型不僅減少了信息損失還提高了建模精度,對于雙率海水腐蝕數據建模具有一定現實意義。

     

    Abstract: With the rapid development of Internet of Things technology, the use of front-end sensors realizes the corrosion potential online detection of low alloy steels in a marine environment, thereby obtaining multitudes of corrosion data. Concerning the problems of data information loss and modeling accuracy reduction caused by the use of the traditional mean value method when processing dual-rate corrosion data, a new dual-rate data processing and modeling algorithm combining the comprehensive index value (CIV) and improved relevance vector regression (IRVR) was proposed. First, the CIV was constructed to characterize the comprehensive influence of the input data, and the beetle antennae search (BAS) algorithm was applied to optimize its parameters. Then, linear regression models between the best CIV sequence and the output data were established to convert the dual-rate corrosion data into single-rate data for modeling, which retained more information of the original corrosion data. Finally, the IRVR method based on BAS optimization of compounding kernels was given to establish the prediction model for dual-rate seawater corrosion data of low alloy steels. The results show that the proposed model CIV-IRVR increases the number of modeling samples from 196 for the mean value method to 1834. Moreover, the mean absolute error, root mean square error, and coefficient of determination of the CIV-IRVR model are 1.1914 mV, 1.5729 mV, and 0.9963, respectively, which outperforms commonly used comparison algorithms, such as the artificial neural network (ANN) and support vector regression (SVR). Moreover, the CIV-IRVR model can help obtain the prediction results with error bars, and it has the absolute error distribution closest to 0, which highlights its excellent predictive performance on the seawater corrosion potential of low alloy steels. Thus, the proposed model not only reduces the information loss and improves the modeling accuracy but also has practical significance for modeling dual-rate seawater corrosion data.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164