<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于面投影微立體光刻技術的三維模擬儲層巖心模型制造

Fabrication of a three-dimensional simulated reservoir core model based on area projection micro-stereolithography

  • 摘要: 首先搭建具有高精度面投影微立體光刻設備,通過理論分析和實驗相結合的方法獲得最優打印工藝參數,然后提出一種可用于模擬地層巖心的微球堆疊巖心模型,并通過分析巖心模型成型機理,選取具有更高成型精度的堆積方式對巖心模型進行設計。該模擬巖心制造方法具有對特殊巖心結構制造的高適應性,為實驗室顯微鏡下研究多種EOR技術微觀驅替機理提供了新思路。

     

    Abstract: Petroleum exploitation plays a very important role in national energy security. With continuous exploitation of oil fields in my country, the efficiency of conventional water injection oil production is decreasing year by year. Enhanced oil recovery (EOR) technologies, such as polymer flooding, microbial flooding, micro–nano flooding, and other flooding technologies have been proposed and developed for application. However, the microscopic displacement mechanism and displacement effect of these technologies are still unclear. Current oil displacement research needs to be verified by core displacement experiments. However, the current displacement experiments all use artificial cores, glass etching channels, photoetched microchannels, etc., as the oil displacement environment. These displacement environments are insufficient in terms of oil displacement dimensions and observation phenomena. Due to this, there is an urgent need for a core manufacturing method that is more suitable for laboratory oil displacement research. In this study, we proposed a method for manufacturing a simulated three-dimensional core structure based on micro-stereolithography technology. This method not only has the advantages of fast manufacturing speed and high forming accuracy, but is also able to realize the visualization, parameterization, and customized design of a micron structure. The core model self-searched by stereo lithography has a three-dimensional pore structure in the order of hundreds of microns and can be used to simulate the experimental study of reservoir displacement flow mechanism. In this research, a high-precision surface projection micro-stereolithography equipment was built, and the optimal printing process parameters were obtained through a combination of theoretical analysis and experiments. Then, a microsphere stacked core model was proposed that can be used to simulate formation cores. By analyzing the forming mechanism of the core model, a stacking method was selected with a higher forming accuracy to design the core model. Finally, the core of a 100-micron-sized microsphere accumulation was realized by micro-stereolithography to achieve three-dimensional molding. The simulated core manufacturing method in this study has high adaptability to special core structure manufacturing and provides a new idea for studying the microscopic displacement mechanism of various EOR technologies under a laboratory microscope.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164