<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

高壓直流干擾大幅值管地電位產生原因及影響因素分析

Causes of high amplitude of pipe-to-soil potential under HVDC interference and influencing factors

  • 摘要: 基于實際的工程參數建立了高壓直流干擾電場計算模型,利用數值模擬計算技術對高壓直流干擾大幅值管地電位的產生原因進行探究。考察接地極與管道之間的間距、管道防腐層類型、管道長度及土壤結構等因素對高壓直流干擾下管地電位的影響規律,得到高壓直流干擾大幅值管地電位是在接地極與管道距離較近、防腐層的絕緣性能較高、管道長度較大及上低下高的土壤電阻率分層結構共同作用下產生的。

     

    Abstract: Since the 1950s, international studies have confirmed the technical advantages of high-voltage direct current (HVDC) transmission projects, such as large capacity, low loss, and high stability. In recent years, due to the reverse distribution of energy demand and resources in China, large-scale long-distance transportation of energy is inevitable. HVDC is especially suitable for large-scale transmission projects such as “west to east power transmission” and “north to south power transmission.” Therefore, a number of HVDC projects have been built in China since the 1980s. However, with the large-scale construction of HVDC transmission projects, the interference effect of HVDC grounding electrode on metal facilities is increasingly prominent, in which the buried pipeline will produce high amplitude of pipe-to-soil potential under HVDC interference. As a result, HVDC interference can cause damage to pipelines, personnel, and related equipment. However, there is no systematic analysis of the causes of high amplitude of pipe-to-soil potential at home and at abroad. Based on the actual engineering parameters, this paper established a calculation model of the high-voltage direct current interference electric field on the buried pipeline and a numerical simulation technology was used to explore the causes of the high amplitude of pipe-to-soil potential under HVDC interference. Moreover, the influence of the distance between the grounding electrode and the pipeline, the type of anti-corrosion coating, the length of the pipeline, and the soil structure on the pipe ground potential under HVDC interference was investigated. Results reveal that the high amplitude of pipe-to-soil potential under HVDC interference is under the joint action of the short distance between the grounding electrode and the pipeline, the high insulation performance of the anti-corrosion layer, the large length of the pipeline, and the soil layered structure with low resistivity at upper and high resistivity at lower.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164