<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

雙孔聚能爆破煤層裂隙擴展貫通機理

Crack propagation and coalescence mechanism of double-hole cumulative blasting in coal seam

  • 摘要: 針對雙孔聚能爆破孔間煤層裂隙擴展貫通問題,基于對雙孔爆破應力波疊加效應的分析,建立雙孔聚能爆破數值分析模型,研究雙孔同時起爆時應力波的傳播特征、煤體的應力狀態、煤體裂隙擴展貫通規律以及應力波疊加效應對裂隙擴展的影響。結果表明,應力波疊加效應致使兩爆破孔中間截面上部分區域及其鄰域內形成均壓區,迫使部分徑向裂隙轉向,主導爆生裂隙空白帶的形成;兩爆破孔間的定向裂隙相互貫通后,爆生氣體相互作用促進貫通區裂隙的擴展并貫穿空白帶。同時,結合煤層深孔聚能爆破現場試驗發現,在兩爆破孔外側,應力波疊加效應促進裂隙的擴展,該作用隨著遠離爆破孔呈先增加后減小之勢;在兩爆破孔之間,應力波疊加效應抑制部分區域裂隙的擴展,致使兩爆破孔之間不同位置處煤層增透效果有起伏變化。

     

    Abstract: This paper focuses on the radius of coal failure zones under cumulative blasting with shaped charge. Based on the analysis of the mutual superposition effect of the explosion stress waves during the simultaneous detonation of two blastholes, a numerical analysis model of the double-hole cumulative blasting with linear shaped charge was established. Additionally, the propagation characteristics of the stress wave during the simultaneous detonation of two blastholes, stress state of the coal body, mechanism of coal crack propagation and coalescence, and influence of the stress wave superposition effect on crack propagation were evaluated. Results show that the stress wave superposition effect induces the formation of a pressure equalization zone in the partial region of the middle section of the two blastholes and its adjacent regions. This occurrence forces the radial cracks of the two blastholes to turn, and they cannot connect with each other, leading to the formation of a gap blank zone between the two blastholes. After the directional cracks generated under cumulative blasting load coalesce, the collision of the explosive gases produced from the two blastholes further promotes the expansion of the cracks in the directional crack coalescence zone and eventually penetrates the gap blank zone. Field test results of deep-hole cumulative blasting in coal seams show that the explosion stress waves from the blastholes in the opposite side promotes the propagation of the blasting-induced crack on the left or right side of the two blastholes. This propagation first increases and then decreases as it moves away from the blasthole. Between the two blastholes, the stress wave superposition effect from the two blastholes inhibits the propagation of the cracks in some areas, resulting in a W-like fluctuation in the degree of improvement of the gas drainage effect at different positions in the area between the two blastholes.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164