<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

納米技術在鎂質耐火材料中應用的研究進展

Progress in the application of nanotechnology to magnesia refractories

  • 摘要: 利用納米技術制備復相鎂質耐火材料,不僅可以緩解高溫工業對高性能鎂質材料的需求,而且又能實現鎂質耐火材料的輕質化和多功能化,進而達到提高產品附加值的目的。因此,利用納米技術制備復相鎂質耐火材料具有較高的研究意義。從鎂質耐火材料損毀機制的角度,綜述了近年來國內外納米技術在低碳鎂碳質、鎂鈣質、鎂鋁質耐火材料中的研究現狀和進展,并且分析了納米技術在鎂質耐火材料中的作用機理,最后指出了納米技術在鎂質耐火材料中應用所面臨的挑戰和發展方向。

     

    Abstract: Magnesia refractories are promising high-temperature structural materials known for their high melting point, excellent high-temperature stability, and promising mechanical properties, which make them suitable for numerous high-temperature applications in steel manufacturing, metallurgy, building materials, and ceramics. However, traditional magnesia refractories do not meet the requirements established for advanced refractories. Low-carbon magnesia carbon refractories have several disadvantages, including poor slag and thermal shock resistances, owing to their reduced carbon content. Magnesia calcia refractories have poor hydration resistance due to the presence of free calcium oxide. Moreover, magnesia alumina refractories have poor sintering and mechanical properties owing to their volumes and thermal expansion mismatch. Therefore, the techniques used to prepare high-performance magnesia refractories have attracted widespread attention. Recently, nanotechnology has emerged as a promising new technology that is widely used improve refractory yield and in many other applications because of its excellent surface properties, small size, quantum dimensions, and macro quantum effects. The preparation of magnesia composite refractories using nanotechnology relieves the demand for high-performance magnesia refractories by high-temperature industries and also contributes to the development of lightweight and functional value-added products. Therefore, the use of nanotechnology in the preparation of magnesia composite refractories has great significance for the enhancement of their properties. In this paper, the research status and progress of nanotechnology in recent years with respect to the damage mechanisms in low-carbon magnesia–carbon refractories, magnesia calcia refractories, and magnesia alumina refractories in China and overseas were reviewed. In addition, the interaction mechanisms were analyzed, the challenges and developments in the application of nanotechnology were discussed.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164