<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

H2/H2O氣氛下Fe?C合金薄帶氣固脫碳反應動力學

Gas–solid reaction kinetics of decarburization of Fe–C alloy strips in H2/H2O

  • 摘要: 為對H2/H2O氣氛下Fe?C合金薄帶的氣固反應脫碳進行動力學研究,在保證快速脫碳而鐵不氧化的前提下,利用可控氣氛高溫管式脫碳爐,研究了不同的脫碳溫度、薄帶厚度、脫碳時間對Fe?C合金薄帶脫碳效果的影響。結果表明延長脫碳時間、提高脫碳溫度、減少薄帶厚度均可提高脫碳效果。當脫碳溫度為1353 K,在脫碳過程中,薄帶可以分成明顯的3層,由表面到內部依次是完全脫碳層、部分脫碳層和未脫碳層。完全脫碳層的組織為鐵素體,此部分碳含量最低;部分脫碳層由鐵素體、滲碳體和少量石墨相組成,未脫碳層由珠光體和大量石墨相組成,此部分碳含量最高。脫碳層的厚度隨著脫碳時間的延長而增加,脫碳層的厚度y與時間t平方根滿足良好的線性關系,可用函數y =kt0.5描述,碳原子擴散所需擴散激活能為122.36 kJ?mol?1,脫碳反應為表觀一級反應,表觀活化能為153.79 kJ?mol?1

     

    Abstract: To address environmental issues and decrease production costs, the disruptively innovative solidstate steelmaking process was investigated. In this process, a high-carbon sheet is continuously decarburized using an oxidizing gas to achieve a low-carbon sheet. A significant benefit of the process is the elimination of several conventional processes, including the basic oxygen process, secondary refinement processes, and continuous casting, and the absence of inclusions. The most important feature of the process is the use of high-carbon iron melts to avoid inclusion formation, so that secondary refinement processes are eliminated. To study the gas–solid reaction kinetics of the decarburization of Fe–C alloy strips in H2/H2O, the effects of the decarburization temperature, strip thickness, and decarburization time on the decarburization effect of the Fe–C alloy strips were studied by a controlled-atmosphere high-temperature tube decarburization furnace. The results show that prolonging the decarburization time, increasing the decarburization temperature, and reducing the strip thickness can improve the decarburization effect. The Fe–C alloy strip cross section is composed of the complete decarburization layer, partial decarburization layer, and nondecarburized layer at 1353 K. The microstructure of the complete decarburization layer is ferrite. The partial decarburization layer is composed of ferrite, cementite, and a small amount of graphite phase. The nondecarburized layer is composed of pearlite and a large amount of graphite phase. The thickness of the decarburized layer has a good linear relationship with the square root of the decarburization time, which can be described by the function y = kt0.5. The diffusion activation energy of the decarburization reaction of the 1.5 mm Fe–C alloy strip is 122.36 kJ?mol?1. The variations of the average carbon content were studied, and the apparent activation energy of the decarburization reaction of the Fe–C alloy strips was 153.79 kJ?mol?1.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164