<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

電弧爐內長電弧等離子體的數值模擬

Numerical simulation of a long arc plasma in an electric arc furnace

  • 摘要: 全廢鋼連續加料電弧爐內長電弧作為爐內主要的能量來源,對廢鋼熔化及鋼液升溫至關重要。采用磁矢量勢的磁流體動力學方法建立了電弧爐內電弧的數值模型,并基于該數值模型對電弧爐內電磁場、溫度場和流場進行耦合求解,研究了電流大小、弧長對電弧爐內電弧的溫度、速度、壓力及氣體剪切力特性的影響。結果表明,全廢鋼連續加料電弧爐內電弧等離子體呈“長鐘型”分布,電弧柱較細長;隨著電流增大,電弧有效作用范圍增大,陽極表面電弧壓力和氣體剪切力增大;隨著弧長增加,電弧有效作用范圍減小,陽極表面的電弧壓力和氣體剪切力減小。短弧操作對熔池沖擊劇烈,長弧操作熔池較為平穩,合理控制電流和弧長能有效提高電弧熱效率。

     

    Abstract: The continuous scrap electric arc furnace adopts a long arc operation for a longer arc length and a larger discharge power. Although the long arc differs from the traditional welding short arc, few reports on long arc simulation research in the field of the electric arc furnace are available. As the main energy source in the electric arc furnace, the long arc is very important for the melting of scrap and heating of molten steel. Due to the complicated physical phenomena in the electric arc furnace, it is difficult to accurately obtain the distribution of various physical fields in the furnace. Therefore, numerical simulation is a frequently used method for studying the arc plasma in the electric arc furnace. In this paper, the magnetohydrodynamic method of the magnetic vector potential was used to establish the numerical model of an arc. Based on this numerical model, the electromagnetic field, temperature field, and flow field were coupled and solved. The effects of current and arc length on the temperature distribution, velocity distribution, arc force, and shear stress of the arc in the electric arc furnace were studied. The results show that the arc plasma in the electric arc furnace is distributed in a long bell shape, and the arc column is slender. As the current increases, the effective arc action range increases, and the arc pressure and shear stress on the anode surface increase. As the arc length increases, the effective arc action range decreases, and the arc pressure and shear stress on the anode surface decrease. The short arc operation has a strong effect on the molten pool, and the long arc operation is relatively stable. A reasonable control of the current and arc length effectively improves the thermal efficiency of the arc.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164