<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

集束氧槍結構參數對射流流場分布特征的影響

Flow field characteristics of a coherent jet using various lance tip structures

  • 摘要: 采用數值模擬及熱態燃燒實驗方法,分析了3種不同集束氧槍末端幾何結構在常溫及高溫條件下的射流速度場及溫度場分布特性,并重點研究了常用槍位條件下射流動壓對熔池的沖擊形貌特點的影響. 研究結果表明,采用收束式約束集束氧槍可有效抑制射流能量向徑向的擴散,從而延長伴隨流高溫區長度,達到提高超音速射流核心段長度及熔池攪拌效果的目的.

     

    Abstract: Coherent lances have been playing an extremely important role in the process of supplying oxygen to an electrical arc furnace, which has been widely used in metallurgy, and its metallurgical and operational benefits have been well reported. When compared with the conventional supersonic oxygen lance, the coherent lance could increase the oxygen utilization rate, strengthen penetration ability, and achieve a good stirring effect. However, there was limited research about the flow field characteristics of a coherent jet using different restriction structures for a coherent lance tip. This paper analyzed velocity and temperature profiles at various parameters and conditions. Both numerical simulation and combustion experiment have been carried out to investigate the velocity and temperature profiles using three kinds of restriction structures at room and high ambient temperature conditions. Further, the impact diameter and depth of the molten bath have also been analyzed at a certain lance height. The result shows that the restriction structure could delay energy transmission in a radial direction, which enlarges a high-temperature zone in an axial direction, resulting in the increase of the velocity potential core length and the improvement of the mixing ability of the main oxygen jet.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164