<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

高錳酸鉀強化海藻酸鈉抑制閃鋅礦浮選的作用及機理

Effect and mechanism of potassium-permanganate strengthening and sodium-alginate depression of sphalerite flotation

  • 摘要: 通過浮選試驗、X射線光電子能譜(XPS)分析和吸附量測試分析,研究了高錳酸鉀和海藻酸鈉對黃銅礦、方鉛礦和閃鋅礦三種硫化礦物浮選的影響,考察了高錳酸鉀強化海藻酸鈉抑制閃鋅礦浮選的作用機理。浮選試驗結果表明,單獨使用高錳酸鉀或海藻酸鈉均無法實現對閃鋅礦的選擇性抑制。同時添加適量高錳酸鉀和海藻酸鈉對閃鋅礦具有選擇性的協同抑制作用,而對黃銅礦和方鉛礦浮選的影響較小。XPS分析結果表明,海藻酸鈉與閃鋅礦表面氧化產生的氧化鋅、氫氧化鋅或硫酸鋅等氧化物發生化學吸附,而不與未氧化的閃鋅礦表面發生吸附。吸附量測試結果表明,高錳酸鉀對閃鋅礦的預先氧化作用顯著增加了海藻酸鈉在閃鋅礦表面的吸附量,因此高錳酸鉀可以強化海藻酸鈉對閃鋅礦的抑制作用。

     

    Abstract: Zinc is an important raw material and nonferrous metal that has an extremely important role in the development of national economies. For this reason, countries around the world continue to strengthen their research efforts on the development and utilization of zinc resources. Sphalerite is an important source of zinc metal, which often coexists with chalcopyrite, galena, and pyrite in nature. The flotation separation of complex polymetallic sulfide ore is a difficult problem in the field of mineral processing engineering. To achieve the flotation separation of chalcopyrite, galena, and other minerals from sphalerite, depressants are needed. Due to the difficulty of activation after the depression of galena and other sulfide ores, a zinc depression and lead floatation process is usually used. The choice of the sphalerite depressant is critical when separating zinc and other sulfides. The traditional sphalerite depressants are generally inorganic. Although these depressants significantly improve the hydrophilicity of the sphalerite surface and strongly depress the sphalerite, they have a certain inhibitory effect on other sulfide ores while depressing the sphalerite. In addition, these agents are difficult to degrade and have a negative impact on the environment. To achieve high-efficiency flotation separation of sphalerite and sulfide minerals and improve the quality of the concentrate products, the development of new inhibitors is becoming increasingly important. Thence, the effect of the oxidizer potassium permanganate and organic depressant sodium alginate on the flotation of three kinds of sulfide minerals are studied, including chalcopytite, galena, and sphalerite. The investigations involved flotation tests, X-ray photoelectron spectroscopy (XPS) analysis, adsorption behavior analysis, with an additional focus on the mechanism of potassium permanganate strengthening, and sodium alginate depression of sphalerite flotation. The flotation results show that adding either an oxidizer or sodium alginate alone does not enable the selective depression of sphalerite. However, adding a certain amount of oxidizer and sodium alginate together can realize the selective coordinated depression of sphalerite, with little effect on the flotation of chalcopytite and galena. The XPS analysis results show that sodium alginate is chemically adsorbed on the sphalerite surface with oxidation products such as zinc oxide, zinc hydroxide, or zinc sulfate, but is not adsorbed on an unoxidized sphalerite surface. The adsorption test results show that the preoxidation of potassium permanganate on sphalerite significantly increases the adsorption capacity of sodium alginate on the sphalerite surface. Therefore, potassium permanganate can strengthen the sodium alginate depression of sphalerite flotation.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164