<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

知識圖譜的最新進展、關鍵技術和挑戰

Recent advances, key techniques and future challenges of knowledge graph

  • 摘要: 圍繞知識圖譜的全生命周期技術,從知識抽取、知識融合、知識推理、知識應用幾個層面展開綜述,重點介紹了知識融合技術和知識推理技術。通過知識抽取技術,可從已有的結構化、半結構化、非結構化樣本源以及一些開源的百科類網站抽取實體、關系、屬性等知識要素。通過知識融合,可消除實體、關系、屬性等指稱項與實體對象之間的歧義,得到一系列基本的事實表達。通過本體抽取、知識推理和質量評估形成最終的知識圖譜庫。按照知識抽取、知識融合、知識推理3個步驟對知識圖譜迭代更新,實現碎片化的互聯網知識的自動抽取、自動關聯和融合、自動加工,從而擁有詞條自動化鏈接、詞條編輯輔助功能,最終達成全流程自動化知識獲取的目標。最后,討論知識圖譜未來的發展方向與可能存在的挑戰。

     

    Abstract: The Google knowledge graph is a knowledge base used by Google and its services to enhance the search engine's results with information gathered from a variety of sources. Since its inception by Google to improve users' quality of experience of the search engine, the knowledge graph has become a term that is recently ubiquitously used in medical, education, finance, e-commerce and other industries to promote artificial intelligence (AI), which evolves from perceptual intelligence to cognitive intelligence. As a branch of knowledge engineering, a knowledge graph is based on the semantic network of knowledge engineering, and it combines the latest advancements achieved in machine learning, natural language processing, knowledge representation, and inference. Both academia and industries are showing keen interest in AI, and several studies are in progress under promotion of big data. With its powerful semantic processing and open interconnection capabilities, the knowledge graph can break the data isolation in different scenarios, and can generate application value in intelligent information services such as intelligent search and recommendation, intelligent question answering, and content distribution networks, thereby making information services more intelligent. The state of the art of knowledge graph technologies is outlined by introducing a process of building a knowledge graph. A knowledge graph is a structured representation of facts, consisting of entities, relations and semantic descriptions. A comprehensive summary of the overall lifecycle technologies of the knowledge graph is provided, including knowledge extraction, knowledge fusion, knowledge reasoning, and knowledge application. But the focus is on knowledge fusion and knowledge reasoning. Entities, relations, attributes, and other knowledge elements can be extracted from existing structured, semi-structured, unstructured data sources, and websites given in encyclopedia using knowledge extraction. With knowledge fusion, the ambiguity between referential items such as entities, relations, and attributes can be eliminated, and a series of basic facts can be obtained. The final knowledge base is formed through ontology extraction, knowledge reasoning and quality evaluation. Following the three steps of knowledge extraction, knowledge fusion, and knowledge reasoning, it can iteratively update the knowledge graph and realize full process automation knowledge acquisition, such as realizing the automatic extraction, automatic association and fusion, automatic processing of fragmented Internet knowledge, and realizing automatic linking of entries and auxiliary functions of entry editing. Finally, the future directions and possible challenges of the knowledge graph are discussed.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164