<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

面向船舶多種余熱梯級利用的TEG-ORC聯合循環性能

TEG-ORC combined cycle performance for cascade recovery of various types of waste heat from vessels

  • 摘要: 傳統的溫差發電(TEG)和有機朗肯循環(ORC)等技術難以兼顧船舶多種性質余熱的不同特點,且利用率較低。本文提出了一種TEG-ORC聯合循環船舶余熱梯級利用系統,研究了ORC底循環蒸發壓力變化對系統輸出功率、熱效率、多級余熱利用量和成本等重要性能的影響。結果表明,TEG-ORC聯合循環實現了發電成本和熱效率的優化,在TEG/ORC底循環比為0.615的工況下,主機煙氣余熱利用率隨ORC蒸發壓力的增加在小區間波動,系統的余熱利用功率、輸出功率和熱效率均隨ORC蒸發壓力的增加而增大,系統單位發電成本隨ORC蒸發壓力的增加而降低。在ORC蒸發壓力達到0.9 MPa時,主機煙氣余熱利用率為62.15%,余熱利用功率為1919.68 W,輸出功率為139.22 W,熱效率為7.25%,單位發電成本為3.09 ¥·(kW·h)–1

     

    Abstract: High energy consumption and low energy efficiency are problems that have plagued vessels in operation for many years. Traditional technologies such as thermoelectric generator (TEG) and organic Rankine cycle (ORC) are difficult to take into account the different characteristics to various waste heat of vessels. Simultaneously, the utilization rate of vessel waste heat is relatively low. To achieve the purpose of various types of waste heat from vessels, this study presents a vessel waste heat cascade utilization device system, which is based on the TEG-ORC combined cycle. The effects of the ORC evaporation pressure on the performance of the system were analyzed, which includes the combined cycle system output power, system thermal efficiency, multi-stage waste heat utilization and power generation cost of the system. The results show that the TEG-ORC combined cycle system improves the waste heat utilization performance and the combined cycle enables the optimization of power generation cost and system thermal efficiency. Based on the condition that the TEG-ORC basic cycle ratio of 0.615, the utilization rate of flue gas waste heat generated by the main engine, fluctuates in a small interval with the increase of ORC evaporation pressure. The waste heat utilization power of each unit, output power and thermal efficiency of the system enhance with the increase in the ORC evaporation pressure. At the same time, the unit power generation cost of the system decreases with the increase in the ORC evaporation pressure. When the ORC evaporation pressure reaches 0.9 MPa, the waste heat utilization rate of the flue gas generated by the main engine is 62.15%, the waste heat utilization power of the system is 1919.68 W, the output power of the system is 139.22 W, the thermal efficiency of the system is 7.25%, and the cost of system unit power generation is 3.09 ¥·(kW·h)–1.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164