<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

全尾砂高濃度膠結充填的環管試驗

Loop test study on the high-concentration cemented filling of full tailings

  • 摘要: 為探明全尾砂高濃度充填料漿的灰砂比、濃度和流速對管道阻力的影響規律,預測工業充填管道阻力,開展中試規模環管試驗。根據管壁切應力與剪切速率關系建立管道阻力預測模型,利用灰關聯法分析各因素對管道阻力的影響強弱,通過線性回歸獲取料漿流變參數。結果表明,管道阻力對料漿濃度的變化最為敏感,隨濃度增加成二次函數增長。料漿流速對管道阻力的影響僅次于濃度,層流輸送時管道阻力隨流速增加成線性增長。灰砂比對管道阻力的影響有雙重性,灰砂質量比小于1∶8時膠凝材料的黏結作用占主導并增加管道阻力,反之膠凝材料的潤滑作用占主導并降低管道阻力。環管試驗得到的料漿流變參數明顯小于流變儀測試結果且更接近工程實際,管道阻力預測模型的誤差小于10%。

     

    Abstract: The high-concentration slurry prepared from full tailings used for mine backfilling can effectively eliminate the disasters caused by underground voids and tailing ponds. Using pipelines to transport filling slurry is the most efficient way, and the pipe resistance is one of the most important parameters. Presently, the loop test method for studying the pipe transportation parameters of filling slurry is closest to engineering reality. To determine the influence of the cement-sand ratio, concentration, and flow velocity of the high-concentration filling slurry prepared from full tailings on the pipe resistance and predict the resistance of industrial filling pipelines, pilot-scale loop tests were performed. A pipe resistance prediction model was established based on the relationship between the shear stress and the shear rate at the pipe wall. The gray correlation method was used to analyze the influence of various factors on the pipe resistance, and the rheological parameters of filling slurry were obtained by linear regression. The results show that the pipe resistance is most sensitive to the mass concentration of filling slurry and increases quadratically. The flow velocity of filling slurry has the second-greatest effect on pipe resistance, and the resistance increases linearly with flow velocity in laminar flow. The cement-sand ratio of filling slurry has a dual effect on the pipe resistance. When the cement-sand ratio is less than 1∶8, the cohesion effect of the cementing material is dominant and increases the pipe resistance. On the contrary, the lubrication effect of the cementing material is dominant and reduces the pipe resistance. The rheological parameters of filling slurry obtained by the loop test are much smaller than those obtained by the rheometer, and the loop test method is more reliable. The error of the pipe resistance prediction model is within 10%.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164