<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于深度學習的高效火車號識別

Efficient wagon number recognition based on deep learning

  • 摘要: 基于高性能的YOLOv3目標檢測算法,提出一種分階段高效火車號識別算法。整個識別過程分為兩個階段:第一階段在低分辨率全局圖像中檢測出火車號區域位置;第二階段在局部高分辨率圖像中檢測出組成火車號的字符,根據字符的空間位置關系搜索得到12位火車號,并利用每個字符的識別置信度及火車號編碼規則進行校驗得到最終火車號。另外,本文提出一種結合批一化因子和濾波器相關度的剪枝算法,通過對兩個階段檢測模型的剪枝,在保證識別準確率不降(實驗中略有提升)的條件下降低了存儲空間占用率和計算復雜度。在現場采集的1072幅火車號圖像上的實驗結果表明,本文提出的火車號識別算法達到了96.92%的整車號識別正確率,平均識別時間僅為191 ms。

     

    Abstract: The automatic recognition of a wagon number plays an important role in railroad transportation systems. However, the wagon number character only occupies a very small area of the entire wagon image, and it is often accompanied by uneven illumination, a complex background, image contamination, and character stroke breakage, which makes the high-precision automatic recognition difficult. In recent years, object detection algorithm based on deep learning has made great progress, and it provides a solid technical basis for us to improve the performance of the train number recognition algorithm. This paper proposes a two-phase efficient wagon number recognition algorithm based on the high-performance YOLOv3 object detection algorithm. The entire recognition process is divided into two phases. In the first phase, the region of the wagon number in an image is detected from a low-resolution global image; in the second stage, the characters are detected in a high-resolution local image, formed into the wagon number according to their spatial position, and the final wagon number is obtained after verification based on the recognition confidence of each character and international wagon number coding rules. In addition, we proposed a new deep learning network-pruning algorithm based on the batch normalize scale factor and filter correlation. The importance of every filter was computed by considering the correlation between filter weights and the scale factor generated via batch normalization. By pruning and retraining the region detection model and character detection model, the storage space occupation and computational complexity were reduced without sacrificing recognition accuracy (which is even slightly improved in our experiment). Finally, we tested the proposed two-phase wagon number recognition algorithm on 1072 images from practical engineering application scenarios, and the results show that the proposed algorithm achieves 96.9% of the overall correct ratio (here, “correct” means all 12 characters are detected and recognized correctly), and the average recognition time is only 191 ms.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164