<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于融合模型的鋰離子電池荷電狀態在線估計

Online estimation of the state of charge of a lithium-ion battery based on the fusion model

  • 摘要: 針對鋰離子電池荷電狀態(Stage of charge,SOC)在線估計精度不高,等效電路模型法估計精度與模型復雜度相矛盾的問題,本文對擴展卡爾曼濾波算法進行了改進,并以電池工作電壓、電流為輸入,對應等效電路模型法的SOC估計誤差為輸出,采用極限學習機算法,建立基于輸入輸出數據的SOC估計誤差預測模型,采用物理–數據融合方法,基于誤差預測模型,建立了等效電路模型法結合極限學習機的鋰離子電池SOC在線估計模型。仿真結果表明,改進擴展卡爾曼濾波算法提高了算法的估計精度,而物理–數據融合的鋰離子電池SOC在線估計模型減小了由電壓、電流測量所引入的估計誤差,克服了等效電路模型法估計精度與模型復雜度之間相矛盾的問題,進一步提高了SOC的估計精度,滿足估計誤差不超過5%的應用需求。

     

    Abstract: In the context of the global response to environmental pollution and climate change, countries have begun to pay attention to energy system reform and economic development to ensure low carbon transition. Among them, the development of low carbon transportation has become an important aspect of green transportation system construction. The development of electric vehicle technology can effectively reduce energy consumption and environmental pollution. However, with the recent reports of new energy vehicle safety accidents at home and abroad, the safety of lithium-ion batteries has attracted increasing attention from the industry. To prevent overcharging and overdischarging from affecting battery life and safety during use, a complete battery management system is required to control and manage a lithium-ion battery. The state of charge (SOC) used to reflect the remaining capacity of a battery is one of the key parameters. Therefore, an accurate SOC value is of significance to the safety of lithium-ion battery use and the safety performance of new energy vehicles. The low online estimation accuracy of the SOC of lithium-ion batteries and the estimation accuracy of the equivalent circuit model method are inconsistent with the model complexity. This study improved the extended Kalman filtering (EKF) algorithm and established a SOC estimation error prediction model based on the extreme learning machine (ELM) algorithm, which used the operating voltage and current of the battery as input and the SOC estimation error of the equivalent circuit model method as the output. On the basis of the physical data fusion method and the error prediction model, the online estimation model of the lithium-ion battery SOC based on the equivalent circuit model method combined with the ELM was established. The simulation results showed that the improved EKF algorithm enhances the estimation precision of the algorithm. Moreover, the physical data fusion model reduces the estimation error introduced by voltage and current measurements, overcomes the contradiction between the estimation accuracy and complexity of the equivalent circuit model method, improves the estimation accuracy of the SOC, and meets the application requirement that the estimation error must be less than 5%.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164