<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于強化學習的工控系統惡意軟件行為檢測方法

Reinforcement learning-based detection method for malware behavior in industrial control systems

  • 摘要: 網絡環境下的惡意軟件嚴重威脅著工控系統的安全,隨著目前惡意軟件變種的逐漸增多,給工控系統惡意軟件的檢測和安全防護帶來了巨大的挑戰。現有的檢測方法存在著自適應檢測識別的智能化程度不高等局限性。針對此問題,圍繞威脅工控系統網絡安全的惡意軟件對象,本文通過結合利用強化學習這一高級的機器學習算法,設計了一個檢測應用方法框架。在實現過程中,根據惡意軟件行為檢測的實際需求,充分結合強化學習的序列決策和動態反饋學習等智能特征,詳細討論并設計了其中的特征提取網絡、策略網絡和分類網絡等關鍵應用模塊。基于惡意軟件實際測試數據集進行的應用實驗驗證了本文方法的有效性,可為一般惡意軟件行為檢測提供一種智能化的決策輔助手段。

     

    Abstract: Due to the popularity of intelligent mobile devices, malwares in the internet have seriously threatened the security of industrial control systems. Increasing number of malware attacks has become a major concern in the information security community. Currently, with the increase of malware variants in a wide range of application fields, some technical challenges must be addressed to detect malwares and achieve security protection in industrial control systems. Although many traditional solutions have been developed to provide effective ways of detecting malwares, some current approaches have their limitations in intelligently detecting and recognizing malwares, as more complex malwares exist. Given the success of machine learning methods and techniques in data analysis applications, some advanced algorithms can also be applied in the detection and analysis of complex malwares. To detect malwares and consider the advantages of machine learning algorithms, we developed a detection framework for malwares that threatens the network security of industrial control systems through the combination of an advanced machine learning algorithm, i.e., reinforcement learning. During the implementation process, according to the actual needs of malware behavior detection, key modules including feature extraction, policy, and classification networks were designed on the basis of the intelligent features of reinforcement learning algorithms in relation to sequence decision and dynamic feedback learning. Moreover, the training algorithms for the above key modules were presented while providing the detailed functional analysis and implementation framework. In the application experiments, after preprocessing the actual dataset of malwares, the developed method was tested and the satisfactory classification performance for malware was achieved that verified the efficiency and effectiveness of the reinforcement learning-based method. This method can provide an intelligent decision aid for general malware behavior detection.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164