<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于參考模型的視網膜特征量化

Retinal feature quantization method based on a reference model

  • 摘要: 提出一種基于參考模型的視網膜特征量化方法,結合醫生診斷過程中關注的視網膜形態變化特征,提出一系列適用于計算機判斷分析視網膜狀態的可量化特征.在完成正常光學相干斷層成像(OCT)中視網膜內界膜(ILM)、光感受器內外節交界處(ISOS)、布魯赫膜(BM)分割提取的基礎上,利用統計方法構建正常視網膜參考模型.結合參考模型和醫生所關注的視網膜厚度、邊界平滑度以及邊界連續性,實現視網膜不同區域厚度特征、厚度比值特征、梯度特征、曲率、標準差、相關系數特征的計算.基于正常OCT圖像所構建的參考模型,獲取了正常視網膜的厚度及形態特征量化數值.通過分析比較異常OCT圖像與參考模型特征數值之間的差異,可以對應表征出異常圖像中病變導致的異常形態所在位置及嚴重程度.實驗結果表明,通過參考模型獲得的正常視網膜特征信息可以為醫生提供數值參考,同時對異常OCT圖像量化得到的特征數值可以表現出圖像中的異常形態,為后續的異常判斷提供基礎.

     

    Abstract: Optical coherence tomography (OCT) plays an important role in the diagnosis of ocular fundus diseases. Retinal OCT images contain a large amount of useful information for the diagnosis of ocular fundus diseases and are often used to detect small lesions of the fundus. At present, many medical researchers have used OCT to determine the statistical characteristics of the retina to analyze various fundus diseases. When interpreting the OCT images, ophthalmologists will focus on the location of the lesions in the images and the characteristic morphology conducive to abnormal judgment and compare the histological structure of specific objects in the images with the known normal morphology. In the comparison process, the ophthalmologist will conduct a variety of quantitative analyses of OCT retinal images and determine the severity of the abnormalities and the location of the lesions. Finally, on the basis of the differences between the morphologies and types of diseases, the diagnostic decision is obtained. However, at present, OCT instruments generally only provide the thickness, area, and other commonly used characteristic data, and these data are often inadequate to determine the disease. Computer graphics processing technology has been applied to the auxiliary analysis of OCT images. However, this kind of research often confines the object of study to several specific fundus diseases and makes targeted selection of quantitative features. In the actual diagnosis process, it is difficult to confine the retinal images to some known abnormal cases because of the complexity of the situation. In this study, a retinal feature quantization method based on a reference model was proposed, and a series of quantifiable features suitable for computer judgment and analysis of retinal state were proposed. On the basis of the segmentation and extraction of the internal limiting membrane (ILM), junctions of the inner and outer segments of photoreceptors (ISOS) and Bruch's membrane (BM) in normal OCT images, a reference model of normal retina was constructed by the statistical method. Combining the reference model with the retinal thickness, smoothness, and continuity, the thickness characteristics, thickness ratio characteristics, gradient characteristics, curvature, standard deviation, and correlation coefficient characteristics of different regions of the retina were calculated. On the basis of the reference model of normal OCT images, the quantitative values of retinal thickness and morphological characteristics were obtained. By analyzing and comparing the characteristic value differences between abnormal OCT images and reference model, the location and severity of abnormal morphology caused by lesions could be characterized in the abnormal OCT images. The experimental results show that the normal retinal feature information obtained by the reference model can provide a numerical reference for ophthalmologists. At the same time, the characteristic values obtained by quantizing the abnormal OCT images can show the abnormal morphology, which provides a basis for subsequent abnormal judgment.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164