<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

弱光照條件下交通標志檢測與識別

Traffic signs detection and recognition under low-illumination conditions

  • 摘要: 針對弱光照條件下交通標志易發生漏檢和定位不準的問題,本文提出了增強YOLOv3(You only look once)檢測算法,一種實時自適應圖像增強與優化YOLOv3網絡結合的交通標志檢測與識別方法。首先構建了大型復雜光照中國交通標志數據集;然后針對復雜的弱光照圖像提出自適應增強算法,通過調整圖像亮度和對比度強化交通標志與背景之間的差異;最后采用YOLOv3網絡框架檢測交通標志。為了降低先驗錨點框設置精度以及圖像中背景與前景比例嚴重失衡對檢測精度造成的影響,優化了先驗錨點框聚類算法和網絡的損失函數。對比實驗結果表明,在實時性大致相當的情況下,本文提出的增強YOLOv3檢測算法較標準YOLOv3算法對交通標志有更高的回歸精度和置信度,召回率和準確率分別提高0.96%和0.48%。

     

    Abstract: Traffic sign detection and recognition, which are important to ensure traffic safety, have been a research hotspot. In recent years, with the rapid development of automated driving technology, significant progress has been made in developing more accurate and efficient deep learning algorithms for traffic sign detection and recognition. However, these studies mainly focus on foreign traffic signs and do not consider the low-illumination conditions in practical application, which is a common scene. Therefore, many challenges still exist in the application of traffic sign detection and recognition in traffic scenes. To solve the problems of easy omission and inaccurate positioning for traffic sign detection and recognition under complex illumination conditions, the enhanced YOLOv3 (You only look once) detection algorithm, a traffic sign detection and recognition method combining real-time adaptive image enhancement and the YOLOv3 frame was proposed. First, a large and complex illumination traffic sign dataset for Chinese traffic was constructed; it included globally low illumination, locally low illumination, and sufficient illumination images. Then an adaptive enhancement algorithm was proposed for low-illumination images, which can enhance the difference between traffic signs and background by adjusting the brightness and contrast of the images. Finally, high-quality and discrimination images as input were transmitted to the YOLOv3 network framework, and traffic sign detection and recognition were performed. To reduce the influences of the prior anchor box setting accuracy and the imbalance between the background and foreground on the detection accuracy, the clustering algorithm for the prior anchor box and loss function for the network were optimized. The results of the comparison experiment with the LISA dataset and complex illumination traffic sign dataset for Chinese traffic show that the proposed enhanced YOLOv3 detection algorithm has higher regression accuracy and category confidence than the published YOLOv3 algorithm for traffic signs; the recall and precision are higher by 0.96% and 0.48%, respectively, which indicates the application potential of the proposed algorithm in actual traffic scenarios.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164