<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

電鍍Cr涂層對TC4鈦合金燃燒性能的影響

Effect of electroplating Cr coating on combustion characteristics of TC4 titanium alloy

  • 摘要: 通過對鍍有不同厚度(0、15、30、60 μm)Cr涂層的TC4鈦合金在不同氧壓下進行的富氧點燃試驗,研究了鍍Cr層厚度對TC4鈦合金燃燒性能的影響規律,并通過掃描電子顯微鏡(Scanning electron microscope, SEM)、能譜分析(Energy dispersive spectrometer,EDS)和X射線衍射(X-ray diffraction, XRD)等手段進行顯微組織分析。結果表明:當Cr層厚度為15 μm和30 μm時,對TC4的燃燒臨界氧壓無明顯影響,而Cr層厚度增加到60 μm時,可將TC4的燃燒臨界氧壓由0.07 MPa提高至0.15 MPa。同時,燃燒速率隨Cr層厚度的增加而降低,說明Cr層厚度的增加能有效抑制火焰傳播速度。其作用機理可能是在燃燒的過程中,表層Cr元素通過固相擴散、熔化等方式進入熔池,與合金中的Al、V元素共同析出,形成了彌散分布的富Cr、Al、V相,并減少了Al與O的結合,對O元素的擴散有阻礙作用,從而降低了燃燒速率。

     

    Abstract: Titanium alloys are widely used in aviation industry because of their high specific strength, corrosion resistance, and heat resistance. They are widely used in aircraft engine compressor to improve the thrust-to-weight ratio of an aircraft engine. However, they are easily burning because of their low thermal conductivity and high combustion heat. Under some conditions, titanium blades rubbing with their casees to generate a large amount of heat, and finally burns. To meet the requirements of advanced aero engines and prevent the burning of titanium alloys, we must understand the mechanism of titanium alloys combustion. In this study, TC4 titanium alloys coated with Cr coatings with different thicknesses (0, 15, 30, and 60 μm) were subjected to oxygen-enriched atmosphere under different oxygen pressures. The effect of chrome plating thickness on the combustion properties of TC4 titanium alloys was reported, and microstructure analyses were carried out through SEM, EDS and XRD. Results show that chrome plating thickness has no obvious effect on the critical oxygen pressure of TC4 when the Cr layer thickness is less than 30 μm. The pressure threshold of TC4 increases from 0.07 MPa to 0.15 MPa, when the Cr layer thickness increases to 60 μm, which is about two times higher than the pressure threshold of the substrate. Burning velocity decreases as the Cr layer thickness increases, indicating that a thick Cr layer can effectively inhibit the flame propagation speed. In the underlying action mechanism during combustion, surface Cr enters the molten pool via diffusion and melting and precipitates with Al and V in the alloy to form a Cr-, Al-, and V-rich dispersion cloth phase. The combination of Al and O is reduced, thereby hindering of O diffusion and reducing the burning rate.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164