<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于IPSO-RELM轉爐冶煉終點錳含量預測模型

Improved prediction model for BOF end-point manganese content based on IPSO-RELM method

  • 摘要: 分析了影響轉爐冶煉終點鋼水中錳含量的因素, 針對基于BP神經網絡算法的轉爐冶煉終點錳含量預測模型存在的收斂速度慢, 預測精度低等問題, 提出了一種基于極限學習機(ELM) 算法建模的新思路, 并引入正則化以及改進粒子群優化算法(IPSO), 建立了基于改進粒子群算法優化的正則化極限學習機(IPSO-RELM) 的轉爐終點錳含量預測模型; 應用國內某煉鋼廠轉爐實際生產數據對模型進行訓練和驗證, 并與基于BP、ELM和RELM算法的三類模型進行比較.結果表明, 采用IPSO-RELM方法構建的模型, 錳含量預測誤差在±0. 025%范圍內的命中率達到94%, 均方誤差為2. 18×10-8, 擬合優度R2為0. 72, 上述三項指標均顯著優于其他三類模型, 此外, 該模型還具有良好的泛化能力, 對于轉爐實際冶煉過程具有一定的指導意義.

     

    Abstract: The basic oxygen furnace (BOF) steelmaking process, as the predominant steelmaking method used around the world, involves very complex physical and chemical phenomena such as multi-component reactions, multi-phase fluid dynamics, and high temperature. The main task of the BOF process is tailoring the temperature and melt components to meet the requirements of high-quality steel production. With the development of intelligent steelmaking, the prediction of the end-point manganese content is an extremely important task for the BOF process, and improving the level of control regarding the end-point of BOF steelmaking can reduce production costs and enhance efficiency. In this paper, the mechanism of the BOF steelmaking process and the factors influencing the endpoint manganese content were analyzed. The control variables for predicting the end-point manganese content were also determined. To solve the problems of slow convergence, weak generalization ability, and low prediction accuracy in the prediction model established for the BP neural network, a new modeling concept based on an extreme learning machine (ELM) algorithm was proposed. By introducing regularization and improved particle swarm optimization (IPSO), a prediction model for the end-point manganese content in a converter based on improved particle swarm optimization and a regularized ELM (IPSO-RELM) was established. The paper then trained and verified the performance of these models with actual production data. A comparison of the performance of the proposed model with those of the prediction model of the BP neural network, the ELM model, and the RELM model reveals that the IPSO-RELM prediction model has the highest prediction accuracy and the best generalization performance. The hit ratio of the IPSO-RELM prediction model is 94%when the predictive errors of the model are within 0. 025%, the mean square error is 2. 18 × 10-8, and the fitting degree is 0. 72. Relative to the above three models, the IPSO-RELM prediction model may provide a more accurate prediction of the end-point manganese content and thus serves as a good reference point for actual production.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164