<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

超聲外場對不同溫控狀態下ZL205A鋁合金凝固規律的影響

Effect of ultrasonic outfield on solidification rules of ZL205A aluminum alloy under different temperature-control states

  • 摘要: 采用不同的超聲外場處理熔體工藝, 研究了其對鑄錠質量的作用機理與改善效果. 針對保溫(750℃)和空冷(從750℃空冷7 min 10 s至約650℃)兩種不同溫控狀態下的ZL205A鋁合金熔體, 分別進行相同參數的超聲場處理, 研究超聲場對凝固組織的影響規律, 并利用力學拉伸實驗進行驗證. 研究結果表明: 在保溫狀態下對熔體施加超聲處理, 具有較好的除氣與改善第二相組織分布的效果; 在空冷狀態下施加超聲處理則可以消除集中縮孔, 顯著細化晶粒; 當在保溫和空冷條件下全程采用超聲處理, 鑄錠內部質量的改善效果最佳. 力學性能的測試結果與鑄錠凝固組織的變化規律具有一致性, 驗證了上述結論. 綜上, 對不同溫控狀態下的熔體施加超聲處理, 對熔體凝固過程的影響不同, 對鑄錠內部質量的改善效果也各有側重.

     

    Abstract: Since the development of the aviation industry, improving the flight performance and reducing the weight of aircrafts has always been the goal pursued by aviation designers. Therefore, it becomes increasingly important to develop a new alloy material with high hardness, high strength, and light weight. To obtain excellent mechanical properties and good corrosion resistance, a new kind of alloy material, ZL205A alloy, was developed by the Beijing Institute of Aerial Materials (BAM) in the 1960s. Owing to its favorable mechanical properties and excellent corrosion resistance, ZL205A alloy has been well applied in the aviation industry. However, this kind of Al alloy still possesses some undesirable solidification defects: shrinkage, porosities, coarsening grains, and solute segregation. Ultrasonic melt treatment (UST) provides a means to eliminate or modify these defects. In the present work, the effects of UST on ZL205A alloy were investigated for two conditions, i.e., before casting and during solidification in ambient environment. Then, the effects of ultrasonication on the as-cast microstructures and the tensile properties were accordingly characterized and analyzed. For the case in which UST was only introduced before casting (holding temperature at 750℃), degassing and the distribution of secondary phases were modified. For the case in which UST was only introduced when cooling from 750℃ for 7 min 10 s to about 650℃, grain refinement and reduced porosities were generated. When UST was continuously employed for both conditions, the above properties were further improved compared with those of ingots without ultrasonic treatment. The mechanical tensile test results show that the improvement of the ingot internal structure can improve the ingot mechanical tensile properties, which proves the correctness of the above research results. Thus, UST carried out at two different conditions induced different regulatory functions and influencing mechanisms. This study shows that the UST of ZL205A aluminum alloy in different melt states has different emphases on improving the internal structure of the ingot.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164