<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

高劑量氦離子輻照對新型中子增殖鈹鎢合金表面結構的影響

Effect of high dose helium ion irradiation on the surface microstructure of a new neutron multiplying Be?W alloy

  • 摘要: 為了確保未來核聚變反應堆的氘氚自持燃燒必需采用中子增殖材料來得到合適的氚增值比。金屬鈹被認為是最有前途的核聚變反應堆固態中子倍增材料,但其熔點低,高溫抗輻照腫脹性能差,因此需要尋找和研發具有更高熔點和更耐輻照腫脹的新型中子增殖材料以滿足更先進的聚變堆要求。本研究嘗試提出并制備了一種更高熔點的鈹鎢合金(Be12W),通過X射線和掃描電子顯微鏡對它的相組成和表面結構進行分析。對新型鈹鎢合金進行高劑量的氦離子輻照,發現合金表面一次起泡的平均尺寸約為0.8 μm,面密度約為2.4×107 cm?2,而二次起泡的平均尺寸約為80 nm,面密度約為1.28×108 cm?2。分析氦輻照引起的表面起泡及其機制,并與純鈹和鈹鈦合金表面起泡的情況進行了對比。

     

    Abstract: A neutron multiplier must be employed to obtain the proper tritium breeding rate and ensure the self-sustaining combustion of deuterium and tritium in fusion reactors, which represents a new and powerful solution for the energy problem. Several researchers have proposed the use of beryllium, an outstanding nuclear metal, as a promising solid neutron multiplier in the helium-cooled ceramic breeder (HCCB) test blanket module (TBM) of the Chinese TBM program. In this module, beryllium will be subjected to high-dose irradiation with high-energy neutrons during services in reactor to produce a large number of helium ions and significant irradiation damage resulting in extreme performance degradation. Unfortunately, the metal’s low melting point and poor irradiation swelling resistance at high temperatures limit its usage in the DEMO reactor. Thus, finding or developing a new neutron multiplier with a higher melting point and better ability to resist irradiation swelling than beryllium in advanced fusion reactors is an important undertaking. Knowledge of the characteristics of the microstructural changes of beryllium and/or beryllium alloys under irradiation is an important factor contributing to the understanding of the degradation of their physical-mechanical properties. In this study, a new beryllium tungsten alloy (Be12W) with a high melting point was proposed and fabricated by hot isostatic pressing. The phase composition and surface structure of Be12W were then analyzed by X-ray and scanning electron microscopy. The Be12W alloy was irradiated with 30 keV He+ ions at room temperature at a dose of 1×1018 ions·cm?2 and ion fluence of 0.2 μA. Microstructural changes and the types of helium gas-filled blisters that developed on the surface of the alloy after irradiation were subsequently investigated. Blisters with an average size of 0.8 μm and in-plane number density of 2.4×107 cm?2 initially develops, followed by blisters with an average size of about 80 nm and in-plane number density of 1.28×108 cm?2.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164