<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

燒傷創面多自由度精密激光切痂系統

Precision multi-degree-of-freedom laser therapy system for excision of eschar over burn wound

  • 摘要: 針對復雜空間創面法向自動聚焦和切痂的關鍵技術問題, 提出了一套由5自由度運動平臺和2自由度激光光路控制機構組成的激光切痂控制系統.對激光切痂并聯機構進行運動學逆解分析, 推導了運動平臺和激光光路控制機構的位置對應關系.結合所推導的位置對應關系和復雜創面輪廓三維掃描結果, 該系統可實現激光軌跡的自動規劃, 從而完成激光自動切痂.基于所提出的激光切痂系統, 進行了激光切痂實驗研究, 實驗測試結果表明: 該激光切痂系統能很好完成人體手部區域的三維輪廓掃描與重建, 并自動規劃激光焦點光斑運動軌跡并切痂.

     

    Abstract: Early escharotomy in cases of severely burned patients can reduce infection and shorten the course of treatment. From the treatment effect, the quality of escharotomy operation is critical to the postoperative recovery of burn patients. However, the traditional burn wound escharotomy surgery easily causes bleeding as well as other related complications. Applying high-energy laser cutting can effectively reduce bleeding. Moreover, its treatment cycle is short, and it is highly precise, less prone to related complications, and leads to fast postoperative recovery. Considering that the mechatronics of medical equipment can greatly improve the treatment effect and combining the multi-degree-of-freedom motion platform with laser cutting is more convenient, accurate, and effective, this paper focuses on the key technical issues of normal automatic focusing and cutting in complex space wounds. Considering the advantages of multi-degree-of-freedom motion platform, a set of laser escharotomy control system composed of five-degrees-of-freedom motion platform and two-degrees-of-freedom laser optical path control mechanism was proposed. The degree of freedom of the parallel mechanism was analyzed and coordinate system of the whole mechanism was established. Second, inverse kinematic analysis of the laser eschar cutting parallel mechanism was carried out. Last, the position correspondence between the motion platform and the laser light path control mechanism was derived. The system could realize automatic planning of the laser trajectory and complete the automatic laser cutting by combining the derived corresponding position and the 3D scanning result of the complex wound contour. Based on the proposed laser cutting system, an eschar cutting experiment was carried out, and the experimental test results show that the laser escharotomy system can complete the 3D contour scanning and reconstruction of the human hand region well, and it can also automatically plan the laser focus spot motion track and complete the escharotomy.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164