<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

外加拉應力對13Cr馬氏體不銹鋼的腐蝕行為影響

Effect of tensile stress on corrosion behavior of 13Cr martensitic stainless steel

  • 摘要: 采用電化學測試手段(開路電位、交流阻抗譜及動電位極化曲線測試), 結合接觸角測試及體視顯微鏡微觀形貌觀察探究在80 g·L-1 NaCl溶液中拉應力對L80-13Cr馬氏體不銹鋼鈍化膜溶解與再修復機制的影響.結果表明, 拉應力大小與L80-13Cr的鈍化特性存在正相關關系.隨著外加拉應力的增大, L80-13Cr馬氏體不銹鋼的開路電位負移, 電子轉移電阻減小, 線性極化電阻減小, 反應速率隨著拉應力的增大而增大.而L80-13Cr馬氏體不銹鋼在高電位下再鈍化形成的鈍化區會縮短, 自腐蝕電位降低, 維鈍電流密度增加.接觸角測試和體視顯微鏡微觀形貌觀察發現, 拉應力使得表面接觸角減小, 不銹鋼表面容易發生點蝕.外加拉應力使得L80-13Cr馬氏體不銹鋼的表面能增加, 促進鈍化膜的溶解, 并且抑制鈍化膜的再生, 導致材料耐蝕性降低.

     

    Abstract: Tubes in deep wells are subjected to the mixed effects of the environment and stress and thus suffer many failures. Therefore, studying the corrosion of materials under stress deformation is necessary. This paper aims to investigate the effect of applied tensile stress on the dissolution of passive film and the repair mechanism of L80-13Cr martensitic stainless steel in solution of 80 g·L-1 sodium chloride. Electrochemical tests were employed for measurements, where the main test measurements include open circuit potential (OCP), electrochemical impedance spectra (EIS), and potentiodynamic polarization tests. Contact angle measurement was combined with microscopic morphology analysis (Zoom stereo microscope) to investigate the surface activity. The test results show that there is the positive relation between applied tensile stress and the passivation characteristic of L80-13Cr martensitic stainless steel. Increase in the applied tensile stress negatively shifts the OCP value of L80-13Cr martensitic stainless steel, decreases the electron transfer resistance (Rt) and polarization resistance (Rp), and increases the rate of reaction; however, the passivation region significantly reduces, the passivation current density (Ecorr) increases, and the self-corrosion current density decreases, which forms at a high potential. The results of contact angle test and microscopic morphology analysis show that the applied tensile stress reduces the surface contact angle and promotes the pitting of L80-13Cr martensitic stainless steel. Applied tensile stress can increase the surface energy of L80-13Cr martensitic stainless steel, promote the dissolution of the passivation film, and inhibit the regeneration of the passivation film; thus, it can deteriorate the corrosion resistance of materials.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164