<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

低溫取向硅鋼常化工藝和滲氮工藝對組織、織構和磁性能的影響

Effects of normalizing process and nitriding process on the microstructure, texture, and magnetic properties in low-temperature grain-oriented silicon steel

  • 摘要: 利用電子背散射衍射技術(EBSD)、掃描電鏡(SEM)分析了低溫取向硅鋼常化工藝、滲氮工藝對常化組織、再結晶組織與抑制劑的影響, 對比研究了常化冷卻速率、滲氮溫度和滲氮量對再結晶組織、織構和磁性能的影響規律.結果表明, 常化冷卻速率越快, 一次再結晶晶粒尺寸越小.常化冷卻速率較慢時, 高溫滲氮的樣品一次再結晶晶粒尺寸偏大, 使二次再結晶驅動力降低, 二次再結晶溫度提高, 且滲氮量低, 追加抑制劑不足, 最終二次再結晶不完善.高溫滲氮與低溫滲氮導致脫碳板中抑制劑尺寸不同, 高溫滲氮表層抑制劑與次表層抑制劑尺寸基本無差異, 低溫滲氮表層抑制劑尺寸比次表層抑制劑尺寸大.低溫滲氮且滲氮量低的樣品雖然二次再結晶較完善, 但由于其常化溫度低、常化冷卻速率快, 一次再結晶晶粒尺寸小, 二次再結晶開始溫度稍早, 黃銅取向晶粒出現, 最終磁性差.滲氮量較高的高溫滲氮和低溫滲氮樣品雖都能基本完成二次再結晶, 但磁性存在差異, 磁性差的原因是高溫滲氮樣品的最終退火板中出現較多的偏210 < 001>取向晶粒.

     

    Abstract: The influences of the normalization parameters and nitriding parameters on the microstructure of normalized samples, the primary recrystallization microstructure, and inhibitors were analyzed by electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM) techniques. The effects of normalizing cooling rates, nitriding temperatures and nitrogen content on the primary recrystallization and secondary recrystallization microstructure, textures, and properties were studied. The results show that grain sizes decrease with the increasing normalizing cooling rate; when the rate is slow, the grain size of high-temperature nitriding sample increases with the slow normalizing cooling rate, reducing the driving force for secondary recrystallization and increasing secondary recrystallization temperature. The acquired inhibitor is insufficient, which leads to unsuccessful secondary recrystallization. High-temperature nitriding and low-temperature nitriding lead to different sizes of inhibitors in the decarburized sheets; however, inhibitors in the surface and subsurface regions of high-temperature nitriding samples are primarily of the same size, while the inhibitors in the surface region of low-temperature nitriding samples are larger than those of the subsurface inhibitors. The lower-temperature nitriding sample with low nitrogen content exhibits a poor magnetic property. As the grain size remains small at a low normalizing temperature and high normalizing cooling rate, the second recrystallization starts at a slightly lower temperature and Brass-type oriented grains are present. The secondary recrystallization of high-temperature nitriding and low-temperature nitriding samples with high nitrogen content could be basically completed; however, the magnetic properties of samples are different, and more grains with deviated 210 < 001> orientation lead to a reduction in magnetic properties.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164