<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于機器學習的北京市PM2.5濃度預測模型及模擬分析

Machine-learning-based model and simulation analysis of PM2.5 concentration prediction in Beijing

  • 摘要: 對北京市周邊8個點多個壓力高度的溫度、濕度和風速數據, 以及北京市PM2.5污染數據進行了分析和歸一化處理, 建立了反向傳播神經網絡(back propagation, BP)、卷積神經網絡(convolutional neural network, CNN) 和長短期記憶模型(long short-term memory, LSTM) 對上述氣象數據和污染數據進行訓練, 訓練結果表明: 反向傳播神經網絡模型和卷積神經網絡模型對未來1 h的PM2.5污染等級的預測準確率較低, 而長短期記憶模型的準確率較高.使用長短期記憶模型預測未來1 h的PM2.5污染值與實際值十分接近, 表明北京市的PM2.5污染與其周邊地區的氣象條件關系密切.通過利用長短期記憶模型對不同壓力高度的氣象數據進行訓練和對比, 得出在利用氣象數據預測污染時, 僅使用近地面氣象數據比使用多個高度上的氣象數據更加準確.

     

    Abstract: In recent years, the air quality in China has become a matter of serious concern. Among the available indicators for evaluating air quality, PM2.5 is one of the most important. It comprises a complex mixture of extremely small particles and liquid droplets emitted into the air, whose diameters are no more than 2.5 μm. Environments with a high PM2.5 index are extremely harmful to human health. Once inhaled, these particles can affect the heart and lungs and cause serious health problems. Air pollution is closely related to meteorological conditions such as wind speed, wind direction, atmospheric stability, temperature, and air humidity. With the development of various machine learning methods, deep learning models based on neural networks are increasingly applied in air pollution research. In this study, the temperature, humidity, wind velocity data at different pressure altitudes from 8 locations around Beijing and average of PM2.5 data in Beijing were analyzed and normalized. Multi-dimensional data was ideal for research applications using machine learning methods. and three neural network models were built, including the back propagation (BP), convolutional neural network (CNN), and long short-term memory (LSTM) models, and trained them using the meteorological and PM2.5 data.The results indicate that the accuracies of the back propagation and convolutional neural network models in predicting the PM2.5 pollution level in the next hour is much lower than that of the long short-term memory model. The PM2.5 pollution index predicted for the next hour by the long short-term memory model is very close to the actual value. This result reveals the strong relationship between the PM2.5 pollution index of Beijing and the local meteorological conditions. The long short-term memory model is trained using meteorological data from different pressure altitudes, and found it to be more accurate in predicting pollution levels when using near-surface meteorological data than that obtained from multiple altitudes.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164