<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

吡咯/炭黑氧化物復合氧陰極材料的制備及催化性能

Preparation and catalytic studies of pyrrole-doped carbon black oxide cathode materials for oxygen reduction reactions

  • 摘要: 氧還原反應(ORR) 是堿性燃料電池和金屬-空氣電池的重要陰極反應.由于常見的鉑基氧陰極材料存在價格昂貴、穩定性較低等問題, 因此, 開發低成本、高效率的非貴金屬基氧陰極材料具有重要的研究意義和應用價值.氮摻雜碳材料是目前氧陰極材料研究的熱點, 炭黑中碳原子的排列方式類似于石墨, 由于其價格低廉、來源廣泛, 在碳材料的研究中具有獨特的優勢.本文基于炭黑, 采用化學法制備了氮摻雜炭黑氧陰極材料, 研究了其氧還原反應催化活性, 并進行了相關表征.結果顯示炭黑-吡咯復合材料具有極好的氧還原反應活性, 700℃熱處理后性能最優, 在1 mol·L-1KOH中其起峰電位約為0. 9 V, 極限擴散電流密度為2. 6 m A·cm-2, 轉移電子數高于3. 5, 這些特性使得這類材料具有廣闊的應用前景.

     

    Abstract: Oxygen reduction reaction (ORR) is an important cathode reaction for alkaline fuel and air-metal batteries. Because of the high cost and low stability of traditional Pt-based cathode materials for ORR, it is important to find an alternative cathode material of high performance and stability and low cost. Nitrogen-doped carbonaceous materials are currently of keen interest among those alternative oxygen cathode materials. The arrangement of carbon atoms in carbon black (CB) is similar to that of graphite, and it is wellknown that CB has a unique advantage over other carbon materials owing to its relatively low price and wide availability. Based on cheap carbon black, pyrrole-doped carbon black oxide (rCBO-Pyrrole) cathode materials were prepared using a facile synthesis method for this article, and their catalytic performances toward ORR were studied. The characterization of the catalysts was explored using a scanning electron microscope (SEM), a transmission electron microscope (TEM), ultraviolet-visible spectroscopy (UV-Vis), and Brunauer-Emmett-Teller (BET) specific surface area and X-ray photoelectron spectroscopy (XPS). The results of these analyses indicate that nitrogen is successfully doped in the rCBO-Pyrrole composite. BET results show that both rCBO and rCBO-Pyrrole have large specific surface areas, which increase significantly after pyrrole doping of carbon black. Further, the results of catalytic performances show that the rCBO-Pyrrole composite induces excellent catalytic activity toward ORR and exhibits the best performance after heat treatment at 700 ℃. In the electrolyte of KOH (1 mol·L-1), the onset potential of rCBO-Pyrrole is 0. 9 V vs RHE, and the limit diffusion current density of this catalyst is 2. 6 m A·cm-2. Moreover, the electron transfer number of ORR on rCBO-Pyrrole is higher than 3. 5, which indicates a preference for the four-electron reduction pathway. These characteristics and results demonstrate that this kind of material has broad potential applicability.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164