<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

高爐爐缸含鈦保護層物相及TiC0.3N0.7形成機理

Mineralogical phase and formation mechanism of titanium-bearing protective layers in a blast furnace hearth

  • 摘要: 基于高爐破損調查取樣分析, 借助X射線熒光分析、X射線衍射分析、電子探針分析、掃描電子顯微鏡結合能譜分析等手段分析了高爐爐缸、爐底不同部位形成的含鈦保護層化學成分、物相組成和微觀形貌, 并建立正規溶液熱力學模型對Ti (C, N)形成的熱力學條件進行分析, 然后針對高爐的實際工況, 明晰高爐爐缸TiC0.3N0.7形成的條件.結果表明, 高爐爐缸側壁最薄處炭磚殘余厚度僅為200 mm; 爐缸爐底炭磚表面普遍存在含鈦保護層, 保護層平均厚度在300~600 mm左右, 高爐爐缸不同部位形成的保護層中Ti(C, N)主要以TiC0.3N0.7形式存在, 并與Fe相聚集在一起.Ti (C, N)固溶體實際混合摩爾生成吉布斯自由能顯著低于標準混合摩爾生成吉布斯自由能和理想混合摩爾生成吉布斯自由能.在不同溫度條件下, TiC和TiN在固溶體中存在的比例不同, 高溫時以析出TiC為主, 低溫時以析出TiN為主.Ti (C, N)固溶體的形成與高爐熱力學狀態條件直接相關, TiC0.3N0.7在該高爐爐缸中的形成溫度為1423℃.

     

    Abstract: In theory and practice, TiO2-bearing iron ores are the preferred raw materials for prolonging blast furnace times due to their protection of the refractory lining of the hearth. Currently, however, a lack of detailed understanding of the mineralogical composition, formation mechanism, and ratio of C to N in the Ti(C, N) solid solution leaves the blast furnace operator unable to employ a scientific and effective measure to deal with abnormal hearth erosion. As a result, frequent hearth breakouts might occur, causing great financial loss to steel companies. In the present work, in an attempt to clarify the essence of longevity blast furnaces, investigations were conducted into blast furnace hearth damage together with dissection analyses, to derive the mineralogical composition and microstructure of titanium-bearing protective layers. The results show that the exact chemical composition of the TiCxN1-x which formed in the blast furnace is TiC0.3N0.7. Based on thermodynamic analysis, the standard Gibbs free energy of the formation of Ti(C, N) decreases at first, then increases with increasing TiC content. At different temperatures, the proportion of TiC and TiN in the solid solution is different, i.e., more TiC at higher temperatures but more TiN at lower temperatures. At 1423℃, the TiC0.3N0.7 is formed in the hot-side of the investigated blast furnace hearth, and the thickness of the titanium-bearing protective layer varies with smelting intensity, temperature, and circulation strength of hot metal. This paper classifies the protective layer into various types based on formation mechanism. Finally, a comprehensive regulatory scheme is presented to act as a basis for extending the lifespan of the blast furnace hearth.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164