<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

沖刷深度對海上風電塔地震動力響應的影響分析

Analysis of the influence of scour depth on the dynamic response of offshore wind turbine towers under earthquake action

  • 摘要: 基于某海上風電塔進行現場監測、有限元模擬及室內振動臺試驗研究,考慮樁-土相互作用并對結構進行精細化數值模擬分析,研究了不同沖刷深度下結構自振周期的變化及不同沖刷深度對結構地震動作用下動力響應的影響規律.現場監測結果表明:6#風機結構受海水沖刷嚴重,與同時期建造的15#風機相比振動幅度明顯,說明沖刷深度對結構的影響不可忽略.數值模擬分析表明:沖刷深度主要影響結構高階振型,使結構自振周期變長,增幅最大達33%.由于沖刷致使土層對高柔性結構約束減弱,結構將產生大的振動進而導致風機停擺;在遭遇7度罕遇地震時,應立即停止發電工作.室內縮尺振動臺試驗與數值模擬所得結果的變化曲線較為均勻,趨勢上較吻合,充分驗證了數值模擬的準確性.

     

    Abstract: The operational environment of offshore wind turbine towers is complex, and the harsh service environment makes them more vulnerable to damage under conditions of complex stress such as sea water scouring. The scouring pit has a great influence on the vibration of wind turbine towers. It is of great importance to study the dynamic response to earthquakes of wind turbine towers under scouring depths. The research object of this study was a wind turbine tower at a wind farm in Jiangsu Province, which had a seven-degree seismic fortification in the area. Based on finite element simulation, on-site monitoring and a shaking table test of the offshore wind tower, and considering pile-soil interaction in a refined model, variation in the natural vibration period of the structure under different scouring depths and the influence of different scouring depths on the dynamic response of the structure under seismic excitation were studied. On-site monitoring results show that the #6 wind turbine structure is seriously eroded by sea water, and the vibration amplitude is clear compared with the #15 wind turbine built in the same period. These aspects indicate that the influence of scouring depth on the structure could not be ignored. Analysis of numerical simulation show that scouring depth has a great influence on the high-order mode of the structure, which lengthen the natural vibration period of the structure by a maximum of 33%. On account of scouring, constraints of the soil layer on the highly flexible structure were weakened, and the structure produced considerable vibration, which could lead to damage of structures such as wind towers. Results also indicate that when encountering a seven-degree rare earthquake, power generation should immediately be stopped. The variation curves of the shaking table test and the numerical simulation results were more uniform, and the trend coincided well, which fully verified the accuracy of the numerical simulation.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164