<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

仿鴻雁編隊的無人機集群飛行驗證

Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of Anser cygnoides

  • 摘要: 為了降低無人機集群控制的復雜度,高效解決大規模無人機集群控制和長距離飛行時集群變拓撲問題,設計了一種仿鴻雁群編隊的無人機集群自主協同控制方法,借鑒自然界中的鴻雁編隊行為機制,開發了面向無人機平臺的分布式仿生集群控制系統。鴻雁是一種常見的集群鳥類,其在遷徙途中表現的自組網和編隊變拓撲行為與無人機集群飛行有極高的相似性。仿鴻雁編隊行為機制的無人機集群飛行驗證系統采用了低成本四旋翼無人機,利用無線局域網進行組網通信。外場飛行試驗結果表明,自然界中的鴻雁編隊行為機制有助于無人機集群的快速精準編隊控制,實現了無人機的位置實時變拓撲,提高了無人機集群飛行的魯棒性。

     

    Abstract: A coordinated autonomous control algorithm of unmanned aerial vehicle (UAV) swarm was proposed to reduce the complexity of UAV swarm control and solve the problem of changing topological structures in long-distance flight of UAV swarms efficiently. As the UAV swarms, especially fixed-wing ones, fly in a close formation, the influence and benefit of aerodynamic coupling between UAV in swarms should be considered. This paper focused on the application of biological swarm behavior mechanism, which can be used to form the shape of formation and adjust the topological structures of UAV swarm, and not the models of the aerodynamic coupling between UAVs in swarms. The distributed swarm control model of biological swarms based on the behavioral mechanism of Anser cygnoides formation was presented. A novel distributed swarm control system based on the behavioral mechanism of Anser cygnoides formation for low-cost UAVs was developed. Anser cygnoides is a common bird that lives in swarms. Its self-organizing network and formation topology behavior on the manner of migration exhibit high similarities with the application of UAV swarm. The paper designed an experimentation with a UAV swarm system using quadrotors, which communicate wirelessly using a Wi-Fi, to test and verify the feasibility of the proposed novel distributed swarm control algorithm. The field experimentation involved flying the five low-cost quadrotors in a " V” formation, and the position exchange of UAVs was achieved during the experimentation. The whole formation with the five quadrotors flew at a continuous speed during the whole experimentation, whereas the flight mode of fixed-wing UAV was simulated. The field experimentation shows that the formation mechanism of the migrant bird helps in realizing the distributed formation reconfiguration control of the UAV swarm and improves the robustness of the UAV swarm flight and verifies the feasibility of the novel distributed swarm control algorithm.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164