<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

γ預輻照對管流沖刷條件下鈹在EDM-1中腐蝕性能的影響

Corrosion of beryllium in EDM-1 fluid after γ pre-irradiation

  • 摘要: 構建管流式沖刷腐蝕實驗裝置研究γ預輻照對鈹在一號電火花加工油(EDM-1)中腐蝕性能的影響,研究鈹試樣質量變化,進行表面形貌及成分分析.結果表明,鈹在EDM-1管流沖刷條件下受沖刷腐蝕和化學腐蝕的共同作用,前者主要受試樣表面形態影響,后者主要受γ預輻照劑量、雜質元素、EDM-1中含硫有機物等的影響.輻照前后,試樣質量均呈現先減小、后增大、再減小趨勢,腐蝕速率基本隨輻照劑量的升高而增大.γ預輻照促進了鈹試樣在EDM-1中點蝕核和蝕孔的產生,腐蝕2880 h后,未接受預輻照試樣僅產生較為明顯點蝕核,而接受200和100 kGy預輻照試樣中的部分點蝕核發展成為蝕孔,前者直徑約為后者2倍.點蝕核和蝕孔區域出現Al、Si、Fe、Cr、Ti等雜質元素及S元素,雜質元素為誘導產生點蝕的重要因素,含S有機物發生化學反應分別生成物理吸附和化學吸附于蝕孔內部的SO2和SOx,促進蝕孔的形成及擴展.

     

    Abstract: Beryllium is one of the most important materials in particle physics and nuclear physics experiments. Among these applications, it is used as the material in particle collision tubes, such as the beam pipe in the operational Beijing Electron and Positron Collider (BEPC Ⅱ) and in the Circular Electron Positron Collider (CEPC) currently in the planning stage. High-speed particles produce large amounts of γ irradiation and impose a heat load on the beam pipe. The beam pipe must be cooled by the scouring fluid to maintain a stable temperature for particle detection; this cooling process will induce fluid erosion of the beam pipe. The corrosion properties of materials in contact with the oil No. 1 for electric discharge machining (EDM-1) fluid under irradiation are not yet known. A device for testing pipeline corrosion was built to study the corrosion of beryllium in EDM-1 fluid after γ pre-irradiation. The mass of the sample was measured by an electronic balance, and the surface morphologies and composition were examined by scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The results show that the corrosion of beryllium in EDM-1 is affected by two corrosion mechanisms:erosion and chemical corrosion. Erosion is mainly influenced by the surface morphology of the sample, whereas the chemical corrosion is mainly influenced by the dose of γ irradiation, impurity elements in the sample, and organic sulfides in EDM-1. Measurements of the sample before and after irradiation reveal that the mass decreases, then increases, and then decreases again under the combined effects of the two kinds of corrosion. The corrosion rate increases substantially with increasing radiation dose, and γ pre-irradiation promotes pitting nucleation and the formation of pitting holes in beryllium in EDM-1. After 2880 h of corrosion, the sample not subjected to pre-irradiation exhibits only obvious pitting nuclei, whereas some of the pitting nuclei on the sample subjected to 200 and 100 kGy of pre-irradiation develop pitting holes; the diameter of the pitting holes in the former case is approximately twice that of the pitting holes in the latter case. The larger the radiation dose, the earlier the pitting occurs and the larger the diameter of the corrosion holes. Impurity elements (e. g., Al, Si, Fe, Cr, and Ti) and S appear in the pitting nuclei and pitting holes. The impurity elements in the beryllium samples are important factors to induce pitting. The chemical reactions of organo-sulfur compounds produce SO2 and SOx(SO2, SO3, and SO4) in the pitting holes by physical and chemical adsorption, which promotes the formation and expansion of pitting.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164