<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

裝藥結構對煤層深孔聚能爆破增透的影響

Effect of charge structure on deep-hole cumulative blasting to improve coal seam permeability

  • 摘要: 針對裝藥結構對聚能爆破煤層增透的影響,在分析裝藥結構對爆炸應力波傳播特性、爆破裂隙分區影響的基礎上,基于平煤十礦己組煤層瓦斯地質條件設計了煤層深孔聚能爆破現場試驗方案,通過現場試驗探討了裝藥結構對煤層深孔聚能爆破在水平方向和豎直方向上的影響.實驗結果表明:裝藥結構影響煤層深孔聚能爆破增透效果,煤層深孔聚能爆破后,在水平方向爆破影響區內瓦斯抽采濃度平均增幅為52.78%;豎直方向上距離爆破孔相同距離的考察孔在爆破后,處于爆破孔上方的考察孔無炮煙逸出,處于下方的考察孔有炮煙逸出,證明偏心不耦合裝藥結構對爆破孔上方煤層影響小于對下方煤層影響,爆破孔上方爆破裂隙范圍小于下方爆破裂隙范圍.

     

    Abstract: The charge structure is an important aspect of deep-hole cumulative blasting, and its influence on the blasting effect cannot be ignored; a reasonable charge structure can improve the rate of explosive energy utilization, thereby improving the blasting effect. In the study of the mechanism of deep-hole cumulative blasting in coal seam, the concentric decoupled charge structure is extensively analyzed. However, in the field test, the centers of the explosive charge and blast hole are offset because of the effect of gravity. Moreover, an eccentric decoupled charge structure is formed, which changes the decoupling coefficient around the blast hole and affects the blasting effect. This study focuses on the influence of the charge structure on improving coal seam permeability. The influence of the charge structure on the propagation characteristics of the explosion-induced stress wave and the partition of the explosion fracture was analyzed. A field experiment on coal seam deep-hole cumulative blasting was designed based on the gas geological conditions of the Ji group seam in Pingdingshan Coal Mine. Additionally, the influence of the charge structure on the horizontal and vertical directions of coal seam was discussed. Experimental results of deep-hole cumulative blasting in coal seam indicate that the charge structure has an influence on coal seam permeability. In the horizontal blasting area, the average increase in gas concentration is 52.78% after blasting. In the inspection holes located above and below the blast hole respectively, at a vertical distence of 1 m, after blasting, no blasting smoke escapes from the hole above the blast hole, but the blasting smoke escapes from the hole below the blast hole, which proves that the influence of the eccentric decoupled charge structure on coal seam below the blast hole is greater than that on coal seam above it. Moreover, the range of the fracture above the blast hole is smaller than that below the blast hole.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164