<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

多目標多約束混合流水車間插單重調度問題研究

Research on rush order insertion rescheduling problem under hybrid flow shop with multi-objective and multi-constraint

  • 摘要: 研究了多目標多階段混合流水車間的緊急訂單插單重調度問題,綜合考慮工件批量、刀具換裝時間、運輸能力等約束。先以最小化訂單完工時間和最小化總運輸時間為雙目標建立靜態初始訂單調度模型,再針對緊急訂單插單干擾,增加最小化總加工機器偏差值目標,建立三目標重調度優化模型,并分別用NSGA-II算法與融合基于事件驅動的重調度策略和重排插單策略的NSGA-III算法對兩個模型進行求解。最后,以某實際船用管類零件生產企業為案例,先對NSGA-II算法和NSGA-III算法的性能進行評估,得到NSGA-II算法更適用于解決雙目標優化問題而NSGA-III算法在解決三目標優化問題時表現更優的結論,再將所建模型與所提算法應用于該企業的十組插單案例中,所得優化率接近三分之一,驗證了實用性和有效性。

     

    Abstract: To study the multi-objective rush order insertion rescheduling problem under hybrid flow shop with multiple stages and multiple machines, the constraints, such as job lots, sequence-dependent set-up times, and round-trip transportation times, were simultaneously considered. A static optimal scheduling model of initial orders was first established to minimize the maximum order completion time and minimize the total transportation time. The non-dominated sorting genetic algorithm (NSGA)-II algorithm was applied to solve a two-objective optimal problem. Then, for the rush order insertion disturbance factor, the objective to minimize the total machine deviation between the initial scheduling and rescheduling plans was added as a stability index to establish an optimal rush order rescheduling model. The NSGA-III algorithm based on the event-driven rescheduling strategy and order rearrangement strategy was applied to solve a three-objective optimal problem. Finally, a realistic ship pipe parts manufacturing enterprise is regarded as a study case. Two sets of experiments are carried out to explain the motivation of the selected method. The performances of the NSGA-II and NSGA-III algorithms are evaluated by three metrics, including the mean ideal distance, spread of non-dominated solution, and percentage of domination. The results show that the NSGA-II algorithm is more suitable for solving two-objective optimal problem, whereas NSGA-III algorithm performs better in solving three-objective optimal problems. Then, the proposed model and method were applied to 10 rush order insertion cases of the enterprise. All the three objectives were improved according to the compared results obtained by the actual and optimal scheduling. The optimal rate is close to one third, which verifies the feasibility of the proposed model and the effectiveness of the proposed method. The proposed model and method may assist other enterprises that apply make-to-order production mode to reduce the impact of rush order insertion and realize a win-win mechanism between enterprises and customers.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164