<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

H13熱作模具鋼中液析碳化物的研究進展

Recent progress on primary carbides in AISI H13 hot work mold steel

  • 摘要: 從凝固偏析理論、凝固方法、生產工藝及合金設計等方面,綜述了H13鋼中液析碳化物的研究進展,闡明了H13鋼的生產工藝對液析碳化物析出的影響.H13鋼中的液析碳化物是由于凝固偏析而在枝晶間區域產生的,根據形貌的不同可分為多邊形、長條形、塊狀及共晶的層片狀;根據結構不同可分為MC型、M6C型、M7C3或M23C6型;根據成分的不同可分為富Mo型、富V型和富Ti、Nb型.H13鋼在服役過程中,受外力作用時會在液析碳化物處形成裂紋,嚴重降低材料的韌性,控制液析碳化物的數量和尺寸可以減小其危害.工業生產條件下控制H13鋼中液析碳化物的主要手段有凝固控制、變質處理、鑄錠高溫擴散和合金成分優化等.其中凝固過程控制及變質處理可以控制液析碳化物的尺寸、數量及在凝固過程中的生成時機,但無法完全避免液析碳化物的產生.對H13鋼進行合金成分優化可以改變液析碳化物的穩定性.鑄錠高溫擴散是控制H13鋼中液析碳化物的最主要手段,但工業生產中采用的具體加熱溫度和保溫時間有待進一步研究.

     

    Abstract: This paper reviewed the recent development of primary carbides in H13 steel from the aspects of solidification segregation theory, solidification method, production process, and alloy design. The relationship between the production process of H13 steel and the characteristics of primary carbides was clarified. During the solidification of H13 steel, primary carbides can be easily generated by dendritic segregation. The primary carbides in H13 steel can be divided into polygonal, stripy, blocky, and eutectic structures according to the different shapes and can be divided into MC, M2C, M7C3, and M23C6 according to the different structures. The primary carbides can also be classified as Mo-rich, V-rich, and Ti/Nb-rich carbides according to the different compositions. Primary carbides are detrimental to the performance of H13 steel because cracks can easily form around primary carbides during service of the materials. The widely used methods of controlling the primary carbides in H13 steel under industrial production conditions, including solidification control, modification treatment, high-temperature diffusion of the ingot, and alloy composition optimization, were introduced. Modification treatment and solidification control are able to control the size and quantity of primary carbides but are unable to avoid the precipitation of primary carbides entirely. The stability of primary carbides can be relieved by composition optimization. High-temperature homogenization treatment of ingot is the most important means of controlling primary carbides in H13 steel. However, the heating temperature and holding time need further investigation.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164