<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于增強學習算法的插電式燃料電池電動汽車能量管理控制策略

Energy management control strategy for plug-in fuel cell electric vehicle based on reinforcement learning algorithm

  • 摘要: 以一款插電式燃料電池電動汽車(plug-in fuel cell electric vehicle,PFCEV)為研究對象,為改善燃料電池氫氣消耗和電池電量消耗之間的均衡,實現插電式燃料電池電動汽車的燃料電池與動力電池之間的最優能量分配,考慮燃料電池汽車實時能量分配的即時回報及未來累積折扣回報,以整車作為環境,整車控制作為智能體,提出了一種基于增強學習算法的插電式燃料電池電動汽車能量管理控制策略.通過Matlab/Simulink建立整車仿真模型對所提出的策略進行仿真驗證,相比于基于規則的策略,在不同行駛里程下,電池均可保持一定的電量,整車的綜合能耗得到明顯降低,在100、200和300 km行駛里程下整車百公里能耗分別降低8.84%、29.5%和38.6%;基于快速原型開發平臺進行硬件在環試驗驗證,城市行駛工況工況下整車綜合能耗降低20.8%,硬件在環試驗結果與仿真結果基本一致,表明了所制定能量管理策略的有效性和可行性.

     

    Abstract: To cope with the increasingly stringent emission regulations, major automobile manufacturers have been focusing on the development of new energy vehicles. Fuel-cell vehicles with advantages of zero emission, high efficiency, diversification of fuel sources, and renewable energy have been the focus of international automotive giants and Chinese automotive enterprises. Establishing a reasonable energy management strategy, effectively controlling the vehicle working mode, and reasonably using battery energy for hybrid fuel-cell vehicles are core technologies in domestic and foreign automobile enterprises and research institutes. To improve the equilibrium between fuel-cell hydrogen consumption and battery consumption and realize the optimal energy distribution between fuel-cell systems and batteries for plug-in fuel-cell electric vehicles (PFCEVs), considering vehicles as the environment and vehicle control as an agent, an energy management strategy for the PFCEV based on reinforcement learning algorithm was proposed in this paper. This strategy considered the immediate return and future cumulative discounted returns of a fuel-cell vehicle's real-time energy allocation. The vehicle simulation model was built by Matlab/Simulink to carry out the simulation test for the proposed strategy. Compared with the rule-based strategy, the battery can store a certain amount of electricity, and the integrated energy consumption of the vehicle was notably reduced under different mileages. The energy consumption in 100 km was reduced by 8.84%, 29.5%, and 38.6% under 100, 200, and 300 km mileages, respectively. The hardware-in-loop-test was performed on the D2P development platform, and the final energy consumption of the vehicle was reduced by 20.8% under urban dynamometer driving schedule driving cycle. The hardware-in loop-test results are consistent with the simulation findings, indicating the effectiveness and feasibility of the proposed energy management strategy.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164