<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

宏觀接觸熱阻研究綜述

Research overview of macroscopic thermal contact resistance

  • 摘要: 基于國內外學者在宏觀接觸熱阻領域的研究成果,闡述了宏觀接觸熱阻的理論研究和工程應用現狀,介紹了宏觀接觸熱阻的理論計算方法、實驗測量方法和數值模擬方法,明確了各種方法的優缺點.簡述了宏觀接觸熱阻的影響因素,基于中國聚變工程實驗堆(CFETR)低溫超導線圈的降溫實驗,創建界面接觸熱阻分析模型,詳細分析了熱流方向、溫度、壓力等因素對超導磁體不銹鋼鎧甲、介電絕緣材料、失超保護材料接觸熱阻的影響,并進一步探究了溫度、壓力等因素導致接觸熱阻發生變化的熱力學原因.最后,結合工程計算中對準確性和便捷性的要求,指出了接觸熱阻的未來研究方向.

     

    Abstract: Given the limitations of manufacturing precision, manufacturing cost, and other factors, contact clearance is always inevitable at the contact interface of components. The contact clearance leads to the reduction of heat flux during the heat transfer process. The effect of thermal contact resistance is significant, particularly in the fields of aerospace, microelectrical technology, and cryogenic superconductor that are closely related to the operating temperature. The thermal contact resistance is affected by many factors, such as size, shape, space of asperity, mechanical properties of the material, external pressure, and temperature. Moreover, these factors usually interact with each other and need to be coupled. Thus, how to describe the thermal contact resistance accurately and build the appropriate prediction model are the key problems that should be resolved during engineering calculations. On the basis of the research results of domestic and international scholars, the current research state of thermal contact resistance during theoretical calculations and engineering applications were presented. The theoretical calculation, experimental measurement, and digital simulation methods used to analyze macroscopic thermal contact resistance were summarized, and the advantages and disadvantages of these methods were indicated. The effects of different factors on macroscopic thermal contact resistance were briefly discussed. On the basis of the combined cooling experiments of low-temperature superconducting magnet coils of the China Fusion Engineering Test Reactor, the effects of heat flow direction, temperature, and pressure on the thermal contact resistance of superconducting magnet components, such as stainless-steel jacket, dielectric insulation material, and quench protection material, were analyzed. Moreover, the reason why the effects of temperature and external pressure result in the change of thermal contact resistance was investigated from the perspective of thermal mechanics. Finally, given the accuracy and convenience requirements for the calculation of thermal contact resistance during engineering practice, the future research direction was indicated.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164