<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于光電容積脈搏波的有限空間生理疲勞測量

Confined space physiological fatigue measurement based on photoplethysmography pulse wave signal

  • 摘要: 通過有限空間100 min極限載人實驗,提出了基于光電容積脈搏波(PPG)的客觀疲勞測量方法并開發了光電容積脈搏波信號特征參數提取算法用來掌握生理疲勞的血液動力學與循環系統變化特征.研究結果表明,人體出現生理疲勞時,光電容積脈搏波信號平均周期顯著大于未疲勞狀態(p<0.001),血管阻力增大,每搏射血量明顯下降;計算了未疲勞與疲勞狀態下光電容積脈搏波信號的兩種復雜度(KC復雜度和高階KC復雜度)發現,兩種復雜度計算結果一致,均為未疲勞時波形比疲勞時波形更平穩.因此表明光電容積脈搏波信號能夠捕捉到疲勞狀態的生理變化,解決了生理疲勞的客觀測量與快速判斷問題.

     

    Abstract: Confined spaces are extremely common in industrial production and emergency rescue situations, and are also widely found in the fields of mining, chemistry, metallurgy, construction, aviation, submarines, emergency hedging, and others. Confined space operations and living environments are characterized by small spaces, poor ventilation, lack of oxygen, high temperatures and humidity, and poor lighting and communication. Exposure to this operating environment over even short periods of time causes thermal stress and changes in the oxygen content of the human body, which lead to physical discomforts such as increased heart rate, increased blood pressure, and body temperature changes. As exposure time increases, the human body experiences fatigue, confusion, and other symptoms. The physical fatigue caused by the human body being exposed to confined space environments is the main causal factor in safety accidents. Therefore, a method must be developed to enable objective measurement and rapid determination of physiological fatigue. A 100-min-limit manned experiment was conducted in a confined space to test an objective fatigue measurement method based on the photoplethysmography pulse wave (PPG). An algorithm was then developed to extract PPG signal feature parameters to determine the hemodynamics and circulatory system changes that characterize physiological fatigue. As the most basic physiological signal of the human body, the PPG contains abundant information about hemodynamics and autonomic nervous system circulation. This information is reflected in parameters such as the wave shape, speed, and rhythm. The results indicate that when the human body experiences physiological fatigue, the average period of the PPG signal is significantly greater than that when it is non-fatigued (p<0.001), the vascular resistance increases, and the stroke volume per stroke is significantly decreased. The two types of complexity (KC complexity, high-order KC complexity) of PPG signals were calculated under fatigue and non-fatigue conditions. The calculation results was found for these two complexities to be the same, and the waveforms to be more stable when the body is not fatigued. Therefore, the results demonstrate that the PPG signal can capture the physiological changes of the fatigue state and provide objective measurement and enable rapid judgment regarding physiological fatigue.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164