<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

L80鋼在高氣速濕氣環境中沖蝕-腐蝕行為的環路實驗

Erosion-corrosion behavior of L80 steel under high velocity wet gas condition by flow loop method

  • 摘要: 利用高溫高壓濕氣環路研究了L80鋼在高氣相流速濕氣環境中的腐蝕-沖蝕行為.利用腐蝕失重法測試了L80掛片在氣速30 m·s-1,含水率0.0007%,CO2分壓0.5 MPa及55℃的工況下,分別在不同的腐蝕周期下的腐蝕速率.利用激光共聚焦顯微鏡對試樣表面形貌進行了觀察,利用掃描電子顯微鏡對腐蝕產物形貌進行觀察,利用X射線衍射及能譜儀對腐蝕產物組成進行了分析.結果表明,L80鋼在高氣相流速濕氣環境下腐蝕失重嚴重,腐蝕后試樣表面出現大量的微小蝕坑,隨著實驗周期的延長蝕坑會不斷長大.該工況下產生的腐蝕產物主要成分為Fe3C和FeCO3.

     

    Abstract: With the continuous petroleum extraction from deep-water subsea gas fields, many long distance offshore natural gas pipelines have been constructed. The design parameters directly affect the gas flow velocity in pipelines, which may introduce high wall shear stresses on the pipeline internal wall. Moreover, corrosive medium like CO2, H2S, O2, and Cl- always exists in subsea pipelines under high velocity gas flow, which induces erosion-corrosion. Many pipelines in China have entered the middle or late stage of service, and this has increased the risks and failures induced by erosion-corrosion. Furthermore, more natural gas storages are being built for transportation, which require a high-velocity gas flow for gas injection and production processes. A certain amount of corrosive mediums such as residual drilling fluid, hydrochloric acid, condensate water, CO2, and H2S can be found in natural gas, and when combined with a high gas flow velocity, internal erosion-corrosion might occur in the tubing in downhole systems. In this study, a high temperature-high pressure flow loop was applied to investigate the corrosion behavior of L80 steel in a wet gas pipeline with a high gas velocity. The extreme conditions created by the flow loop is 30 m·s-1 gas velocity, 0.0007% water cut, 0.5 MPa CO2 partial pressure, and 55℃ environmental temperature. Corrosion rates at different testing periods were calculated through weight-loss measurements. Confocal laser scanning microscopy and scanning electron microscopy were applied to observe the corrosion morphology. The corrosion product constituents were analyzed using X ray diffraction and energy dispersive spectroscopy (EDS), and the results reveal that severe corrosion occurs and a large number of micro pits appear on the L80 coupons surfaces. Moreover, instead of an integral corrosion prod-uct film, FeCO3 corrosion product chips and Fe3C are present on the steel.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164