<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

集總干擾下六旋翼飛行器的軌跡跟蹤控制

Trajectory tracking control for an unmanned hexrotor with lumped disturbance

  • 摘要: 針對復雜集總干擾下六旋翼飛行器軌跡跟蹤控制問題,給出了混合積分反步法控制與線性自抗擾控制的控制算法. 首先,通過牛頓-歐拉方程建立六旋翼飛行器的非線性動力學模型,并剖析系統輸入輸出的數學關系. 其次,根據六旋翼飛行器動力學模型的特點,將其分為位置與姿態兩個控制環. 位置環采用積分反步法控制理論設計控制器,通過引入積分項來提高系統的抗干擾能力,消除軌跡跟蹤的靜態誤差;姿態環采用線性自抗擾控制技術設計控制器,通過線性擴張觀測器估計和補償集總干擾影響,提高系統的魯棒性. 最后,通過2組仿真算例和1組飛行試驗驗證了本文所提飛行控制算法的有效性. 研究結果表明:該控制算法對集總干擾有較好的抑制作用,能夠使六旋翼飛行器既快又穩地跟蹤上參考軌跡,具有一定的工程應用價值.

     

    Abstract: In recent years, unmanned aerial vehicles (UAVs) have experienced an important growth both in research activities and industrial field. With the abilities to take off, land vertically, and hover along with natural agility and controllability, a hexrotor can extend the potential roles of UAVs. From the view of mechanical structure, hexrotors can be considered simpler than the helicopters because they do not have the swash-plate and do not need to eliminate the gyroscopic torques created by the spinning motors. However, hexrotors are not only extremely sensitive to control inputs and disturbances, they are also complex systems that are nonlinear, highly unstable and with multiple input-multiple output (MIMO) and a high degree of coupling characteristics. This study proposes a hybrid control algorithm combined integral backstepping control with linear active disturbance rejection control to solve the problem of trajectory tracking control for an unmanned hexrotor with lumped disturbance. First, the nonlinear dynamical model of the hexrotor was deduced with the Newton-Euler equation, and the mathematic relation of the input and the output was analyzed. Second, the hexrotor system was divided into the position loop and the attitude loop according to the characteristic of the dynamical model. In the position loop, an integral backstepping control algorithm was applied to design the controller by introducing an integral term to improve the disturbance resistance and eliminate the static error of the trajectory tracking. In the attitude loop, a linear active disturbance rejection control algorithm was used to design the controller by introducing a linear extended state observer to estimate and compensate for the lumped disturbance. Lastly, the effectiveness of the proposed control algorithm was verified through two simulation cases and a flight experiment. The research results show that the proposed algorithm has a strong ability to resist the lumped disturbance and make the hexrotor quickly and steadily track the referenced trajectory. Hence, the algorithm has an important engineering application value.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164