<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

混沌人工魚群的魯棒保性能控制權值矩陣優化方法

A weighting matrix optimization method for robust guaranteed cost control based on chaos artificial fish swarm algorithm

  • 摘要: 針對魯棒保性能控制中的權值矩陣依賴經驗選取,無法最大限度的減小系統保守性的問題,提出了一種基于混沌人工魚群算法的魯棒保性能控制權值矩陣優化方法.該方法中,將保性能控制魯棒界作為優化的目標函數來尋找最優權值矩陣是整個算法實現的關鍵.該種改進的人工魚群優化算法融合了混沌搜索與自適應步長和視野的人工魚群優化算法,有效的解決了基本人工魚群算法的后期收斂速度慢、易陷入局部最優等缺點.通過測試函數對比驗證了該種改進人工魚群優化算法的優越性,并通過應用實例驗證了該權值矩陣優化方法的有效性.

     

    Abstract: Herein, a robust guaranteed cost control weighting matrix optimization method based on chaos artificial fish swarm algorithm was proposed to overcome the dependence on the experience of selecting a weighting matrix in order to achieve robust guaranteed cost control and to overcome the inability of the current method to minimize the system conservative. The objective of this methodology is to estimate the optimal weighting matrix by considering the robust guaranteed cost control boundary as an objective function for optimization. The improved artificial fish swarm algorithm combines the chaos search and the artificial fish swarm algorithm with adaptive step and vision, which effectively resolves various drawbacks, including low convergence rate during the latter stage and easiness of being trapped in a local optimal solution, of a basic artificial fish swarm algorithm. The superiority of the improved artificial fish swarm algorithm proposed herein was verified by the contrast results of the test function. Furthermore, the effectiveness of the weighting matrix optimization method was validated using some application examples.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164