<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于微晶剛玉砂輪的20CrMnTi齒輪成型磨削表面完整性

Surface integrity of form grinding 20CrMnTi gear based on a new microcrystalline corundum wheel

  • 摘要: 為研究微晶剛玉砂輪成型磨削20CrMnTi齒輪的表面完整性,開展了20CrMnTi齒輪成型磨削試驗,分析了砂輪線速度、軸向進給速度及徑向進給量對齒面粗糙度、表層/次表層顯微硬度、微觀組織和殘余應力的影響規律,探討了由磨削引起的磨削燒傷、微觀裂紋等損傷缺陷的形成機理,結果表明:徑向進給量對表面粗糙度的影響最顯著,砂輪線速度次之,軸向進給速度最不顯著;磨削溫度過高會導致磨削燒傷,淬火燒傷使得表面硬度提高5%~20%,回火燒傷則導致表面硬度不同程度地下降;表層組織從外至內分別為白層、暗層和基體組織,白層主要由致密的馬氏體+碳化物+殘余奧氏體組成;砂輪線速度和徑向進給量的增大使得由磨削引起的殘余拉應力增大,表面殘余壓應力下降并逐漸向拉應力轉變,當表面最終殘余拉應力大于材料的斷裂強度時,表面產生微觀裂紋.

     

    Abstract: To study the surface integrity of 20CrMnTi gears for form grinding by a microcrystalline corundum wheel, a grinding experiment on 20CrMnTi gear was performed. Furthermore, the effects of wheel speed, axial feed rate, and radial feed on tooth surface roughness, hardness, microstructure, and residual stresses of the surface/sub-surface were studied. The mechanism of the damage caused by grinding and micro-cracks was discussed. The results show that the effect of radial feed on the surface roughness is the most significant. The wheel speed is then the second most significant, and the axial feed rate is the least significant. In addition, an excessive grinding temperature leads to grinding burns, which the quenching burns cause the surface hardness to increase by 5% -20%, and the tempering burns cause the surface hardness to drop by varying degrees. The surface/subsurface structure is composed of a white layer, dark layer, and bulk material, with the white layer on the top and the bulk material being on the bottom. The white layer is composed of a dense martensitic structure, carbide, and retained austenite. The increase in the wheel speed and radial feed then increases the residual tensile stress caused by grinding. Surface residual compressive stress decreases and gradually changes to tensile stress. When the final residual tensile stress is greater than the breaking strength of the material, the surface produces micro cracks, compromising the integrity of the surface.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164