<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

黏土中靜壓沉樁離心模型

Centrifuge modeling of jacked pile in clay

  • 摘要: 采用西澳大學室內鼓輪式離心機,在預先固結的高嶺黏土中開展不同離心力場(50g,125g及250g,g為重力加速度)條件下的模型壓樁試驗、T-bar試驗和靜力觸探試驗,分析了模型樁在貫入過程、靜置穩定過程中樁身徑向應力(σr)的變化規律,并對后期樁體拉伸載荷階段的徑向應力變化值(Δσr)及樁側摩阻力變化情況行了探討,揭示了在不同超固結比(OCRs)黏土中靜壓樁側摩阻力的演變特性.在此基礎上,通過兩種經驗公式方法對樁側摩承載力進行了預測計算和對比分析.研究結果表明:沉樁過程中樁端相對高度(h/B)對樁身徑向應力的發展變化有很大的影響,樁身不同位置(h/B)的總徑向應力對同一貫入深度而言,存在樁側徑向應力退化現象;基于靜力觸探試驗提出的經驗方法,能有效考慮靜力觸探錐端阻力(qt)和樁端相對高度(h/B)因素的影響,將其應用于黏土沉樁時樁側摩阻力的預測,可取得與試驗實測結果較吻合的結果.研究成果對軟土地區靜壓樁施工與承載力設計具有一定的工程指導意義.

     

    Abstract: Notable contributions to our improved understanding of jacked pile behavior in sand have been achieved through instrumented model pile tests in laboratory test chambers, at elevated g-levels in the centrifuge, and in the field. In recent years, research focusing on pile behavior in clay has declined. Consequently, predictive methods for pile capacity have not advanced beyond those provided in American Petroleum Institute (API 2000) recommendations, which were based on research conducted in the early 1980s. This paper re-focuses attention on the shaft capacity of jacked piles in clay. Three centrifuge scale pile tests were performed in kaolin clay in the drum centrifuge at the University of Western Australia. The tests were performed in pre-consolidated blocks of kaolin, and were subsequently spun in the centrifuge at three different g-levels of 50g, 125g and 250g respectively. The piles were equipped with total pressure sensors located at different depths and were installed by jacking into samples of reconstituted kaolin clay. The kaolin clay samples were prepared to measure the range of the cone penetration test end resistance (qt), undrained strengths (su-Tbar), and overconsolidation ratios (OCRs). These pile tests were used to investigate the lateral stress changes (σr) developed along the pile shafts during pile installation and equalization. In addition, the change in the value of lateral stress (Δσr) and the changes in pile shaft resistance during the pile tension test were discussed. The characteristics of the jacked pile in the clay with different over-consolidation ratios (OCRs) were revealed. Furthermore, the centrifuge data were subsequently used to examine the current design methods for the evaluation of the shaft capacity of displacement piles in clay. The centrifuge test results show that during the pile penetration, a strong dependence of lateral stress on the relative depth of the pile tip (h/B) develops, and the total radial stress, as measured in a particular soil horizon, is observed to decrease as the relative depth of the pile tip (h/B) increases (where h is the height of the sensor above the pile tip, and B is the diameter of the pile). Based on the cone penetration test during the investigation, it is observed that the lateral stress developed on a displacement pile is strongly depended on the cone penetration test end resistance (qt) and the relative depth of the pile tip (h/B). It is shown that the empirical method allowing for a dependence of shaft friction on qt, and h provides good estimates of the shaft capacities measured in centrifuge experiments. The research results have certain theoretical and engineering significance for pile construction and bearing capacity design in the soft soil region.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164