<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

循環熱處理及形變對TC17鈦合金片層組織球化和取向的影響

Effect of cyclic heat treatment with hot deformation on the microstructure and structural orientation of TC17 titanium alloy lamellae

  • 摘要: 將循環熱處理與形變相結合,利用電子背散射衍射等手段探究該工藝對TC17鈦合金片層組織球化和取向的影響.結果表明:TC17鈦合金在兩相區進行單純的循環熱處理其片層組織球化程度有限,而經過循環熱處理+壓縮變形后,其魏氏組織消失,片層α相得到明顯球化,但是其取向均勻性仍沒發生較大變化.此外,變形中兩相的再結晶速度及其強韌性導致了兩相取向的差異性.α相的再結晶速度快于β相,在變形過程中,α相的各向異性首先降低;另一方面,由于α相比β相硬度高,熱變形過程中,α相的變形程度小于β相,應變主要集中在與α相鄰近的較軟的β相,從而導致α相的取向均勻性高于β相.

     

    Abstract: The effects of cyclic heat treatment and hot deformation on the spheroidization and orientation of the TC17 titanium alloy were investigated using a light microscope (LM) and electron backscattered diffraction (EBSD). The experimental results indicate that in the two-phase temperature range of a simple, cycle heat treatment, the spheroidization of the lamellar microstructure of the TC17 titanium alloy is finite. After cyclic heat treatment and compression deformation, the Widmannstatten structure disappears, the spheroidized α lamellae is more obvious, but the uniformity of its orientation is not greatly improved. In addition, the recrystallization velocity, and the strength and toughness of the two phases in deformation lead to a difference in their orientation, and the recrystallization velocity of the α phase is faster than that of the β phase. In the deformation process, the anisotropy of the α phase is preferentially reduced. On the other hand, during the hot deformation process, the degree of deformation of the α phase is lower than that of the β phase, because the α phase is harder than the β phase. The strain is primarily concentrated on the softer β phase adjacent to α phase, which produces greater uniformity in α phase than in the β phase.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164