<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于深度卷積神經網絡的地磁導航方向適配性分析

Direction-matching-suitability analysis for geomagnetic navigation based on convolutional neural networks

  • 摘要: 針對地磁導航方向適配性分析時人工提取的特征主觀性較強且難以表達深層的結構性特征的問題,提出一種基于深度卷積神經網絡(convolutional neural network,CNN)的地磁導航方向適配性分析方法.首先,利用Gabor濾波器的方向選擇特性建立了6個典型方向的適配特征圖;然后,設計了卷積神經網絡對深層次的方向適配特征進行提取,并通過混和粒子群算法(hybrid particle swarm optimization,HPSO)對卷積神經網絡的訓練參數進行優選;最后,通過仿真實驗對所提方法進行了驗證.結果表明,該方法可有效避免復雜的計算以及人工特征提取的盲目性,實現了地磁導航方向適配性分析的自動化,且所提方法的準確率高于傳統的BP網絡和支持向量機,對地磁導航和航跡規劃具有指導意義.

     

    Abstract: Aimed at the problems of artificial direction matching features being too subjective to analyze magnetic matching suitability and deep architectural features that can't be extracted, a new matching suitability analysis method based on a convolutional neural network (CNN) is proposed. First, direction-matching-suitability feature maps in six typical directions are established using the Gabor filter's direction selection characteristics. Second, a CNN is designed to extract the deep direction features. The training parameters of the CNN are optimized with a hybrid particle swarm optimization (HPSO) algorithm. Finally, simulation experiments are conducted to verify the proposed method. Results show that the method can effectively avoid complicated calculations and blindness when artificially extracting direction features, and the direction-matching-suitability analysis for magnetic navigation can be achieved automatically. The method's analysis accuracy is higher than in the traditional BP neural network (BPNN) and support vector machine (SVM), and has practical implications for geomagnetic navigation and route planning.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164