<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

BCOISOA-BP網絡在磨礦粒度軟測量中的應用

BCOISOA-BP network in grinding particle size soft sensor applications

  • 摘要: 傳統人群搜索(SOA)算法通過計算搜索方向、搜索步長和搜尋更新個體位置三個步驟進行尋優.它的缺點在于計算量大,種群之間信息交流少,導致尋優速度慢.針對人群搜索算法存在的缺點,本文提出二項交叉算子改進人群搜索算法(BCOISOA)對其改進.在計算搜索步長方面,本文采用隨機數與最大函數值位置乘積判斷子群位置,進而提高全局尋優計算速率.在更新位置方面,本文提出二項交叉算子加強種群之間的聯系,避免在更新搜索方向過程中,算法因局部最優而導致過早收斂,進而達到快速、準確尋找最優解的目的.本文將以上二項交叉算子改進人群搜索-BP神經網絡算法應用在二段式磨礦過程中,實現磨礦粒度在線軟測量.仿真結果表明,與人群搜索算法和粒子群算法進行比較,二項交叉算子改進人群搜索算法收斂速度更快,預測精度最高,滿足對磨礦粒度實時檢測的要求.

     

    Abstract: The traditional seeker optimization algorithm (SOA) uses three steps for an optimal search:calculating the search direction, searching the step length, and updating the individual position. Its shortcomings are the large amount of calculation required and weak communication between populations, which results in low speed optimization. To address these disadvantages, this paper offers the binomial crossover operator improved seeker optimization algorithm (BCOISOA) as an improvement. In terms of computational search step length, this paper adopts a random number and maximum function product judgment subgroup location so that global optimization computation speed can be improved. In terms of update location, this paper puts forward two crossover operators to strengthen the connection between the populations. This avoids premature convergence of the algorithm during the process of updating the search direction, caused by the local optimum, and achieves a fast and accurate optimal solution. This article usesthe BCOISOA-BP neural network algorithm for a two-phase grinding process to achieve a grind size online soft sensor. Compared with the SOA and PSO algorithms, the simulation result shows that the BCOISOA algorithm has the fastest convergence speed and highest precision. It therefore satisfies the requirements of grind size real-time detection.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164