<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

特厚鋼板陣列射流淬火的表面換熱

Surface heat transfer of jet array impingement quenching for ultra-heavy plate

  • 摘要: 采用特厚鋼板專用輥式射流淬火試驗裝置和多通道鋼板溫度記錄儀,測試出射流速度3.39~26.8 m·s-1、雷諾數12808~117340、水流密度978.7~6751.5 L·(m2·min)-1條件下,84 mm厚鋼板淬火冷卻曲線;進而基于反傳熱修正方法計算高溫鋼板淬火過程壁面溫度和熱流密度,描繪出沸騰曲線,分析多束圓孔陣列射流對特厚鋼板淬火表面換熱的影響.結果表明:射流速度、水流密度等參數影響鋼板表面射流滯止區和平行流區換熱機制,進而影響最大熱流密度分布.射流速度較低時,壁面平行流區觀察到混合換熱和"熱流密度肩"現象;隨射流速度增大,膜沸騰換熱機制消失,最大熱流密度移至較低壁面過熱度處.相關研究將對特厚鋼板淬火過程溫度場計算和組織性能調控提供有益的幫助.

     

    Abstract: Using the ultra-heavy-plate jet-impingement quenching test device and the multi-channel temperature recorder, 84 mm large section plates quenching temperature drop curve was experimentally investigated under the condition of jet velocities ranging from 3.39 to 26.8 m·s-1, Reynolds number from 12808 to 117340 and jet densities ranging from 978.7 to 6751.5 L·(m2·min)-1. Then, wall heat flux, heat transfer coefficient and boiling curve were calculated with inverse heat transfer modified method. The results indicate that both jet velocity and jet density influence the plate surface heat transfer mechanism and the distribution of the maximum heat flux. When jet velocity is low, a mixed heat transfer and "heat flux shoulder" phenomenon can be observed in wall parallel flow zone. With increased jet velocity, the film boiling heat transfer mechanism disappears and the maximum heat flux changes to the low-wall superheat position. These research results benefit the calculation of the temperature field and the control of structure property during ultra-heavy plate quenching.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164