<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

MMSE準則下基于玻爾茲曼機的快速重構算法

Fast recovery algorithm based on Boltzmann machine and MMSE criterion

  • 摘要: 全連接的玻爾茲曼機模型可全面描述稀疏系數間統計依賴關系,但時間復雜度較高.為了提高基于玻爾茲曼機的貝葉斯匹配追蹤算法(BM-BMP)的重構速度和質量,本文提出一種改進算法.第一,將BM-BMP算法的最大后驗概率(MAP)估計評估值分解為上一次迭代的評估值與增量,使得每次迭代僅需計算增量,極大縮短了計算耗時.第二,利用顯著最大后驗概率估計值平均的方式,有效近似最小均方誤差(MMSE)估計,獲得了更小的重構誤差.實驗結果表明,本文算法比BM-BMP算法的運行時間平均縮短了73.66%,峰值信噪比(PSNR)值平均提高了0.57 dB.

     

    Abstract: Fully connected Boltzmann machine models can be used to provide a comprehensive description of statistical dependencies between sparse coefficients but with high time complexity. To improve the speed and quality of the Boltzmann machine-Bayesian matching pursuit (BM-BMP) method, an improved algorithm was proposed. First, the maximum a posteriori (MAP) estimation of the BM-BMP algorithm is decomposed into its value at the last iteration and an increment; thus, it only needs to calculate the increment in each iteration, which greatly reduces the computational time. Second, by calculating the mean of the significant MAP estimations, an effective approximation is obtained for the minimum mean square error (MMSE) estimation and a smaller reconstruction error is achieved. Compared with the BM-BMP, this method reduces the running time on average by 73.66% while improving the peak signal to noise ratio (PSNR) by 0.57 dB.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164